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Abstract

We propose a method for the solution of surface structures from X-ray diffraction based on the phasing of measured

structure factor amplitudes in two stages. First, incorporation of calculated amplitudes and phases of the structure

factors of the known underlying bulk structure, together with an iterative algorithm that ensures the positivity of the

electron density enables the determination of the amplitudes and phases of the surface structure factors contributing to

the crystal truncation rods. Second, inclusion of these structure factors in an iterative algorithm based on Sayre’s

equations enables the phasing of the superstructure rods.
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1. Introduction

For almost a century, X-ray crystallography has
been the workhorse for the determination of the
structure of matter at the atomic scale. The bare
experimental data from which this information is
deduced are a set of measurements of the
amplitudes of scattered X-rays. The phases of this
scattered radiation are not measured directly, but
if they can be deduced, they, together with the
measured amplitudes, allow the calculation of the
distribution of electrons within a repeat unit of
the structure (the unit cell) by a numerical Fourier

transform. The determination of the unknown
phases is known as the phase problem of crystal-
lography.
Crystallographic direct methods [1,2] seek to

obtain initial estimates of structure-factor phases
purely from a knowledge of the measured struc-
ture-factor amplitudes, plus general properties of
the electron distribution in a unit cell, such as its
positivity and atomicity. The adaptation of direct
methods to surface crystallography presents a
unique set of problems and opportunities. First,
although the X-rays are scattered from both the
bulk of the crystal and from the surface region,
since the bulk structure is usually known, the aim
is to recover only the surface structure from the
data. In this respect, the task is analogous to that
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of the so-called structure completion problem, also
addressed in other branches of crystallography [3].
Second, the data consists not of discrete Bragg
spots, but rather of rods of continuous variation of
intensity in reciprocal space in a direction perpen-
dicular to the surface [4]. This allows for the
possibility of oversampling [5] the data relative to
the Nyquist frequency [6] in this direction, a
feature that aids the recovery of the phases from
the data. Third, when the surface is reconstructed

relative to the bulk, i.e. when its spatial period
in a plane parallel to the surface is different
(usually greater) than that of the bulk, some of
these diffraction rods (the so-called superstructure

rods, SRs) arise solely from scattering by the
surface region of this larger periodicity, while
others (the crystal truncation rods, CTRs) have
interfering contributions from both surface and
bulk.
It has been suggested [7–10] that the phase

problem of crystallography may be addressed by
iterative methods that alternatively constrain the
solution in real and reciprocal space. The idea was
first proposed for electron microscopy by Gerch-
berg and Saxton [11,12], where the amplitudes of
complex functions, related by Fourier transforms,
are measurable in both real and reciprocal space.
The iterative algorithm recovers the phases of the
functions in both spaces. An extension of this
algorithm when amplitude data is available only in
reciprocal space, and where some general con-
straints may be imposed in real space, such as a
spatial localization, or some bounds on the real-
space distribution, was subsequently proposed by
Fienup and applied to phase determination
problems in astronomy and optics [13]. We have
earlier proposed an adaptation of this method
[9,10] for the problem of structure completion in
surface X-ray diffraction (SXRD), where initial
phases of the CTRs are taken to be those
calculated for the known underlying bulk struc-
ture. If the data from just the CTRs are used, the
resulting solution is known as the folded [14] or
average structure, which consists of the average of
that in all bulk unit cell components of the surface
unit cell. The coherent Bragg rod analysis (CO-
BRA) method of Yacoby et al. [15] employs a
different algorithm based on an assumption that

the reciprocal-space variation of the complex
structure factor of the unknown part of the surface
is slower than that of the known bulk. In order to
obtain the full structure of the surface unit cell, we
had earlier proposed [8–10] resuming the iterations
of the same algorithm with the SR data also now
included in reciprocal space, but with initial
random values for the phases associated with this
data, or initial phases interpolated from those of
the surface structure factor components of neigh-
boring CTRs. Such an algorithm is based on
constraining the diffracted amplitudes to experi-
mentally measured values in reciprocal space, and
ensuring the reality and positivity of the electron
distribution in real space.
An alternative approach towards a direct

method for surface crystallography has been
suggested by Rius [16]. This approach seeks to
determine the so-called difference structure, i.e. the
difference between the electron density of the
complete surface unit cell and that of the folded
structure, from an inverse Fourier transform of
phased amplitudes of SRs alone. As such, the
difference structure may be positive or negative,
although it does satisfy a constraint of atomicity,
namely that its peaks or dips are substantially
localized near the centers of atoms. By exploiting
the similarity of the spatial dependence of the
difference structure to that of its cube, Rius et al.
deduced a tangent formula that relates the phase of
a structure factor to sums of products of three
other structure factors. An iterative algorithm
based on these relations has been shown to be
capable of phasing the SR amplitudes, and in
favorable cases [17] may enable a solution of the
surface structure.
In the present paper we point out that, if a

structure completion algorithm applied to the
CTR data is able to determine the amplitudes
and phases of their surface structure factor
components (and hence the folded structure),
knowledge of these complex structure factors
allows a more efficient iterative algorithm, based
on the much simpler tangent formula derived from
Sayre’s equations [18] to determine rapidly the
phases of the SR structure factors. Together with
the complex surface structure factors from the
CTRs, the phased SR structure factors allow a
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determination of the complete (unfolded) structure
of the surface unit cell.

2. The structure completion problem or holographic

analogy

The usual aim of surface crystallography is to
recover the unknown surface structure of a sample
with a known bulk structure, where both the
surface and the bulk contribute to a measured set
of diffracted intensities. Thus, the problem of e.g.
recovering the surface electron density from
SXRD may be regarded as one of structure
completion, a problem that has previously been
addressed in the field of protein X-ray crystal-
lography [3,19,20].
Suppose that the scattered amplitude from a

unit cell of the bulk crystal due to an X-ray photon
momentum transfer vector q is represented by Rq;
and that of the surface by Oq: Then the intensity of
the detected X-rays may be written as

Iq ¼ jFqj
2; ð1Þ

where the structure factor Fq may be written as the
sum:

Fq ¼ Rq þ Oq: ð2Þ

In this expression, Oq ¼ ðFq � RqÞ is given by a
Fourier transform of the electron distribution fujg;
i.e.,

Oq ¼
XN

j¼1

uj expðiq 	 rjÞ; ð3Þ

where fujg is defined on a uniformly distributed
grid of N voxels at positions rj within the surface
unit cell.
The approach we will use is to determine the

amplitudes and phases of the surface structure
factors Oq from a knowledge of the measured
intensities Iq and calculated values of the ampli-
tudes and phases of the bulk structure factors Rq:
In a sense, as has been pointed out by Sz .oke [21],
this is quite analogous to the problem of holo-
graphy [22,23] if the set of intensities fIqg are
considered to constitute a hologram, the known
structure factors fRqg represent a reference

‘‘wave’’ and the unknown structure factors fOqg

an object ‘‘wave’’. Although the numerical meth-
ods we use to determine the ‘‘object’’ structure
factors have little similarity to the analogue
methods of Gabor, nevertheless this is a useful
mental analogy, which has also been exploited to
solve the problem of structure completion in
protein crystallography [19,20]. Once the ampli-
tudes and phases of the set, fOqg; of surface
structure factors have been determined, it is a
straightforward matter to calculate, by means of
an inverse Fourier transform, the spatial distribu-
tion, fujg; of the electrons in the surface unit cell,
and hence to solve the structure.
The problem of surface crystallography has

some unique features that are not present in the
structure completion problem in the crystallogra-
phy of bulk samples. This is the presence of the
SRs, which are formed solely by diffraction from
the unknown surface atoms, and for which there is
no contribution from a known part of the
structure (or no reference wave, in terms of the
holographic analogy).
The strategy we describe in this paper is to use a

Fienup-type input–output algorithm, adapted to
the present problem of structure completion, to
first find both the amplitudes and phases of the
surface structure factors contributing to the CTRs,
and then to employ an iterative algorithm based
on Sayre’s relations to find the phases of the SRs
(whose amplitudes are accessible by experiment).

3. Phasing of CTRs by an input–output structure

completion algorithm

The idea of an input–output feedback loop for
phasing that iteratively satisfies conditions in real
and reciprocal space has been suggested by Fienup
[13] for problems where a non-negative distribu-
tion is sought, and where only the amplitudes of
the Fourier transform of that quantity are
accessible by experiment. The aim is to obtain
increasingly better estimates of the phases of this
Fourier transform by iteratively satisfying the
reciprocal-space constraints and the real-space
requirement of the positivity of the sought
distribution. Improvement of phase quality is
directly correlated with an improved estimate of
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that distribution. We show below how a modifica-
tion of such an algorithm can determine both the
amplitudes and phases of the surface structure
factors contributing to the CTRs in SXRD [9,10].
A Fourier transform of this subset of surface
structure factors would yield an electron distribu-
tion representing the folded surface structure
referred to above, which has the same lateral
periodicity as the underlying bulk structure.
A flow chart for such an algorithm is given in

Fig. 1. Starting at the top left-hand corner,
suppose fu

ðnÞ
j g represents the estimate of the folded

surface electron density at the nth iteration.
Proceeding to the top entry of the right-hand
box, we take the Fourier transform ðFTqÞ

OðnÞ
q ¼

XN

j¼1

u
ðnÞ
j expðiq 	 rjÞ; ð4Þ

of this distribution by a fast Fourier transform
(FFT) algorithm. In X-ray diffraction, the Fourier
index q can be taken to be equal to the difference
between the wavevectors of the incident and
scattered X-rays. In SXRD, this may be taken as

q ¼ Han þ Kbn þ Lcn; ð5Þ

where H; K ; and L are Miller indices, an and bn are
reciprocal lattice vectors parallel to the surface of
the bulk lattice, and cn the one perpendicular to

the surface. The periodicity of the crystal restricts
the Miller indices H and K of the CTRs to integer
values. If the atomic layers near the surface
reconstruct to a lateral unit cell greater than that
of the bulk, the X-rays may scatter also into
SRs,which may be characterized by fractional
values of H and/or K : In the case of the CTRs,
the breaking of the periodicity perpendicular to
the surface due to the crystal truncation and, in the
case of the SRs, the finite thickness of the surface
slab, allows scattering into directions correspond-
ing to a continuous variation of L [8]. In the
following we describe an application of this
algorithm solely to the CTR data.
The dimensions of the parallelepiped reciprocal-

space array of fOðnÞ
q g (and consequently the real-

space grid spacing of fu
ðnÞ
j g) are chosen so that all

the values of the wavevector difference q belonging
to the setM of measured structure factors jFgjmay
be embedded within it. The set of elements in the
same parallelepiped reciprocal-space array not
belonging to M may be termed the unmeasured
set U:
The next step is the evaluation of the arguments

of the Fourier coefficients Rq þ OðnÞ
q for all qAM

and the assignment of their arguments to the
phases

fðnÞ
q ¼

arg½Rq� if n ¼ 0;

arg½Rq þ OðnÞ
q � if n > 0

(
ð6Þ

for all qAM: The ‘‘target’’ Fourier coefficients T ðnÞ
q

are then computed by the formula

T ðnÞ
q ¼ jFqj exp½f

ðnÞ
q � � Rq 8qAM: ð7Þ

The inverse Fourier transform

t
ðnÞ
j ¼

1

N

X
q

½T ðnÞ
qAM þ O

ðnÞ
qAU� expð�iq 	 rjÞ; ð8Þ

at the last step within the right-hand box gives rise
to the output electron distribution, ft

ðnÞ
j g:

Thus, in such an input–output scheme [13], the
box on the right of the flow chart transforms an
input electron distribution fu

ðnÞ
j g to an output one

ft
ðnÞ
j g at iteration n by combining experimental

information about the measured amplitudes jFqj
with the current estimates of the phases fðnÞ

q

associated with those amplitudes. The boxes on
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Oq
(n)=FTq{uj

(n)}

φq
(n)=arg[Rq+Oq

(n)], ∀ q∈ M

Tq
(n)=|Fq|exp[i φq

(n)]-Rg, ∀ q∈ M

tj
(n)=FT-1

j{Tq∈ M
(n)+Oq∈ U

(n)}

{uj
(n)}

{tj
(n)}

uj
(n+1)=f(uj

(n), tj
(n))

n n+1

Fig. 1. Flow chart of the input–output feedback loop that

converts an input real-space distribution fu
ðnÞ
j g to an output

distribution ft
ðnÞ
j g by constraining the Fourier transformed

quantities to experimental amplitude data. The new input real-

space distribution fu
ðnþ1Þ
j g for the next iteration of the feedback

loop is calculated from the input and output at the previous

iteration by a set of object domain operations of the form

u
ðnþ1Þ
j ¼ f ðuðnÞj ; tðnÞj Þ; where f is one of the functions discussed in

the text.
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the left of the flow chart describe the steps in the
transformation of the input, fu

ðnÞ
j g; and output,

ft
ðnÞ
j g; at the nth iteration to the input fu

ðnþ1Þ
j g at

the next iteration. These steps are known as the
object-domain operations, and may be written in
the general form u

ðnþ1Þ
j ¼ f ðuðnÞ

j ; tðnÞj Þ: Fienup [13]
suggested four specific prescriptions for such
operations. In the present paper we use only the
simplest of these, which Fienup termed an error-

reduction algorithm, since he was able to prove
that it always converged towards a solution that
simultaneously satisfied the constraints in real and
reciprocal space. The real-space operations of the
error-reduction algorithm are

u
ðnþ1Þ
j ¼

t
ðnÞ
j if t

ðnÞ
j > 0;

0 otherwise:

(
ð9Þ

The progress of successive estimates of the
relevant Fourier coefficients of a particular reci-
procal space scattering vector qAM belonging to a
CTR may be visualized from Fig. 2. The distance
from the center of the circle to its perimeter
represents the magnitude jFqj of the measured
structure factor of the entire sample (bulk plus
surface). Rq is a fixed vector in this amplitude-
phase diagram, representing the bulk structure
factor that is known in both amplitude and phase.
The surface contribution to the total structure
factor must join the end of the vector Rq to the
circle perimeter. The problem is that since the
phase of this vector is initially unknown, there are
an infinite number of such possible vectors. The
first (unweighted difference Fourier [3]) estimate,
T ð0Þ
q ; of this surface structure factor takes this

phase to be equal to that Rq of the bulk. T ð0Þ
q is

thus taken to be parallel to Rq; as shown in Fig. 2.
The inverse Fourier transform of the surface

structure factors fT ð0Þ
q g produces the initial output

real-space distribution ft
ð0Þ
j g: After an application

of the object-domain operations to produce the
new input distribution fu

ðnÞ
j g (n > 0), the Fourier

transform of the latter gives the surface structure
factor estimates fOðnÞ

q g: The phase fðnÞ
q is defined

by the vector sum of Rq and OðnÞ
q as shown in the

figure. Since, in general, the magnitude of this
vector sum will not be equal to jFqj; this vector is
extended (or contracted) without change in direc-

tion until it touches the circle perimeter. The
vector joining the end of the bulk structure factor
Rq and that point on the circle’s perimeter is now
defined as the new estimate T ðnÞ

q :
After several iterations, as convergence is

approached, OðnÞ
q and T ðnÞ

q 8qAM tend to merge.
The resulting phase fðnÞ

q of Rq þ Oq (or of Rq þ Tq)
is the final estimate of the phase of the measured
structure factor Fq: When supplemented by
the Fourier coefficients OðnÞ

q 8qAU; the inverse
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Rq

T q
(0)

T q
(n)

O q
(n)|Fq|

φq
(n)

Fig. 2. Amplitude-phase diagram indicating the relationships

amongst the various component structure factors of scattering

vector q. The circle has a radius of jFqj; the measured amplitude
of Bragg reflection q: Rq represents the structure factor of the

known bulk unit cell. This is known in both amplitude (length)

and phase (angular separation from the dashed line). The

(unweighted) difference Fourier estimate of the structure factor

of the unknown part of the structure (the surface) is represented

by the vector T ð0Þ
q ; which has the same phase (direction) as Rq:

OðnÞ
q is the estimate of the same structure factor at the nth

iteration ðn > 0Þ of the input–output feedback loop, formed

from the input distribution fu
ðnÞ
j g of the surface electron

density. Since the end of the vector sum of Rq and OðnÞ
q will

not in general lie on the circumference of the circle, the length of

this vector is adjusted to the circle radius. The target structure

factor T ðnÞ
q of the surface is then constructed such that when

added vectorially to Rq it is equal in both amplitude jFqj and
phase ðfðnÞ

q Þ to the new estimate F ðnÞ
q of the structure factor of

the entire structure (bulk and surface). The Fourier transform

of the target structure factors fT ðnÞ
q g forms the output

distribution ft
ðnÞ
j g at the nth iteration. The object domain

operations then construct a new input distribution fu
ðnþ1Þ
j g and

the process repeated until Oðnþ1Þ
q and T ðnþ1Þ

q (or fu
ðnþ1Þ
j g and

fu
ðnÞ
j g) converge.
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Fourier transform of the combined set gives the
final estimate of the folded surface electron
distribution as that to which both ft

ðnÞ
j g and

fu
ðnÞ
j g eventually converge.
It should be noted that, due to the continuous

distribution of SXRD intensities along a diffrac-
tion rod, this data may be oversampled in
reciprocal space relative to the Nyquist frequency
corresponding to the thickness of the slab repre-
senting a surface unit cell. In general, the Fourier
transform of such oversampled data would be
expected to generate non-zero electron densities in
a real-space slab of greater thickness than the
physical surface slab. The efficiency of the phasing
process is further enhanced by setting the electron
densities to zero at each iteration in the part of this
notional slab that is not expected to contain
surface atoms [5].
In order to recover the full electron distribution

of a surface unit cell of larger lateral dimensions
than that of the bulk unit cell, it is necessary also
to include the structure factors of the SRs. Since
the SRs do not have contributions from the
underlying bulk, the amplitudes of their surface
structure factors are directly measurable from
experiment. However, for the same reason, the
bulk structure factors are of no use in suggesting
even initial estimates for the phases of the SR
structure factors. Nevertheless, as we demonstrate
in the following, knowledge of the amplitudes and
phases of the CTRs allows the rapid determination
of the unknown phases of the SRs by an iterative
algorithm based on Sayre’s equations [18], that
assume both atomicity and positivity of the
electron distribution.

4. Phasing of the SRs from phased CTRs and

Sayre’s equations

In Section 2 we expressed the Fourier coeffi-
cients Oq as Fourier transforms of surface electron
distribution (Eq. (3)). An alternative expression in
terms of the form factor fs of the sth atom of the
surface unit cell is

Oq ¼
X

s

fsðqÞ expðiq 	 rsÞ: ð10Þ

Since the majority of electrons are localized near
the centers of their respective atoms s; we see that
Eq. (10) will be consistent with Eq. (3) if

fsðqÞ ¼
X

jAðatom sÞ

uj exp½iq 	 ðrj � rsÞ� ð11Þ

and the summation over j is here performed over
just the electrons in the voxels associated with
atom s: That is, an atomic form factor may be
regarded as a Fourier transform with an origin
defined at the center of the atom, of the electrons
of that atom. To put it another way, expressing the
surface structure factor in the form (10) is
equivalent to an assumption that the sought
electron distribution consists of a sum of separable
distributions associated with each atom.
Now consider the structure factor of the same

surface unit cell due to the square of this electron
distribution. It may be written as

Gq ¼
X

s

gsðqÞ expðiq 	 rsÞ; ð12Þ

where

gsðqÞ ¼
X

jAðatom sÞ

u2j exp½iq 	 ðrj � rsÞ�: ð13Þ

If all the atoms are assumed equal (the equal-atom

approximation) we may write

fsðqÞ
gsðqÞ

¼ yq; ð14Þ

a quantity independent of the atom index s:Hence,
from Eqs. (10) and (12)

Oq ¼ yqGq: ð15Þ

By substituting Eq. (13) into Eq. (12) we find

Gq ¼
XN

j¼1

u2j expðiq 	 rjÞ: ð16Þ

Comparing this with Eq. (3), and applying the
convolution theorem, we obtain

Gq ¼
X
q0

Oq0Oq�q0 ð17Þ

and, using Eq. (15),

Oq ¼ yq
X
q0

Oq0Oq�q0 : ð18Þ
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This is Sayre’s celebrated relation [18] amongst
structure factors. The quantity yq may be calcu-
lated from a knowledge of the atomic charge
distribution (in the case of unequal atoms, this
may be taken as the average atomic charge
distribution). However, if, as commonly the case
with an unknown surface structure, these atomic
charge distributions are unknown, a more useful
relationship (sometimes known as a tangent
formula) that follows from Eq. (18) since yq is
real, is

arg½Oq� ¼ arg
X
q0

Oq0Oq�q0

" #
: ð19Þ

We can establish phases of the surface structure
factors giving rise to the superstructure rods by
rewriting this as the recursion relation:

arg½Oðnþ1Þ
q � ¼ arg

X
q0

O
ðnÞ
q0 O

ðnÞ
q�q0

" #
; ð20Þ

where n is an iteration index. The H and K Miller
indices of the scattering vector q are taken to
correspond to those of the SRs. Each of the
surface structure factors in each term on the RHS
corresponds to data from either a CTR or an SR.
Both the amplitudes and phases of the surface
structure factors contributing to a CTR are kept
fixed throughout the iterations at the final values
found from the output of the Fienup algorithm for
the CTRs described earlier. The amplitudes of the
SR structure factors are kept fixed at their values
deduced directly from experimental measurements
of the SR intensities, but since their phases are
initially unknown, they are assigned random
values at the outset (corresponding to iteration
n ¼ 0 on the RHS).
A first pass through the algorithm for all values

of q corresponding to the SRs overwrites these
random phases with those calculated via Eq. (20).
Incrementing n by 1, and substituting these
updated SR surface structure factors on the RHS
allows a new estimate of the SR phases via
Eq. (20). The values to which these phases
converge after several iterations are our final
assignment of the phases of the surface structure
factors of the SRs. Finally, the distribution of
electrons in the surface unit cell is calculated by the

inverse Fourier transform

uj ¼
1

N

X
q

Oq expð�iq 	 rjÞ: ð21Þ

5. Test calculation

We have tested this idea by attempting to
recover a surface structure from simulated SXRD
data. The example we chose was a hypothetical
structure of cð2� 2ÞK=TiO2ð0 0 1Þ: The unit cell of
bulk TiO2 (rutile) in a (0 0 1) direction consists of
mutually orthogonal unit vectors of magnitudes
a ¼ 4:59 (A; b ¼ 2:96 (A and c ¼ 4:59 (A: The a and
b unit vectors lie in a plane parallel to the surface
(the basal plane), while c is perpendicular to it. The
structure consists of a sequence of Ti-O-O-Ti-O-O
layers parallel to the basal plane. The two
sequences of Ti-O-O layers are related to one
another by mirror reflection across a b–c plane.
We assume that the outermost bulk layer is the last
of the above-named O planes.
We assume that the lowest surface layer is at a

height of 0:1cð¼ 0:46 (AÞ above that expected of the
next Ti layer of a bulk structure, but that it has a
cð2� 2Þ periodicity relative to the bulk structure
parallel to the surface. Referring atom positions
relative to a three-dimensional ð2� 2Þ unit cell on
top of the outermost bulk unit cell, with an origin
in a plane half way between the outermost O layer
of the bulk and the expected position of Ti atoms
in an unrelaxed structure, and whose height is the
same as that of a bulk unit cell ðc ¼ 4:59 (AÞ; the
surface atoms were assumed to be at the following
positions:

Ti: (0.0, 0.0, 0.2), (0.5, 0.5, 0.2)
K: (0.3, 0.0, 0.2), (0.8, 0.5, 0.2)
K: (0.15, 0.5, 0.54), (0.65, 0.0, 0.54)

where all coordinates are expressed as fractions of
2a; 2b and c; respectively. It should be emphasized
that, as yet, the true structure of this surface has
not been determined from experimental data, and
so the above model is an arbitrary one chosen
purely for this test. A plan view of this structure is
shown in Fig. 3(a), where for clarity the bulk
atoms are not shown. Two orthogonal projections
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viewed from directions parallel to the unit vectors
a and b of the basal plane are shown in Figs. 3(b)
and 3(c), respectively.

Test ‘‘experimental’’ data were calculated for
this structure by a standard SXRD program.
Relative to a ð2� 2Þ surface unit cell, this test
data consists of a set of SXRD intensities
corresponding to scattering vectors q with integer
values of the Miller index pairs ðH;KÞ; each
varying from �7 to 8 in integer intervals, and a
few values of the third Miller index, L ¼ 0:2; 0:4;
and 0.6. The centered ð2� 2Þ surface unit cell
restricts the combination of H and K Miller
indices to those of even values of ðH þ KÞ (see
the diffraction pattern of Fig. 4, which marks the
projections of the CTRs and SRs onto a plane
parallel to the surface). Furthermore, due to the
mirror planes perpendicular to the surface and
parallel to the H-axis, it is necessary only to know

ARTICLE IN PRESS

Fig. 3. Three orthogonal projections of the model of the

cð2� 2ÞK=TiO2ð0 0 1Þ surface assumed in the calculations. (a)

Plan view, projected onto a plane parallel to the surface. Only

the atoms in the surface unit cell are shown. (b) side view,

projected onto a plane defined by the b- and c-axis (c) side view,

projected onto a plane defined by the a- and c-axis. Shown in

(b) and (c) are all atoms of a ð2� 2Þ surface unit cell as well as
those of an underlying ð1� 1Þ bulk unit cell. The chemical

species of the atom symbols are indicated on the upper right of

each panel.

Fig. 4. Cut through reciprocal space parallel to the surface,

intersecting the crystal truncation rods (CTRs) and SRs from a

cð2� 2ÞK=TiO2ð0 0 1Þ surface. There is a mirror plane of

symmetry perpendicular to the paper and passing through the

H-axis. Only the intersected rods corresponding to KX0 are

symmetrically inequivalent. The filled circles represent the

intersections of CTRs and the open circles the SRs.
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values of intensities of the rods with positive values
of K : The combination of mirror symmetry and
Friedel’s Law allows the deduction of the inten-
sities of all other diffraction rods of Fig. 4 for both
positive and negative values of L: The additional
data required of our algorithm are, of course,
calculated values of the amplitudes and phases of
the corresponding structure factors of the under-
lying truncated bulk structure of TiO2ð0 0 1Þ:
These were also calculated by the same computer
program. Due to the fact that the bulk unit cell is
half the size of the surface unit cell in the directions
of the a- and b-axis, the bulk lattice contributes
only to the CTRs, which are the subset of rods
with even values of the Miller indices H and K :
The CTR data formed the input to the error-

reduction form of the Fienup algorithm of Sec-
tion 3. This determines the amplitudes and phases
of the surface contributions to the CTRs. In our
present example, convergence was achieved after
about 25 iterations. An inverse Fourier transform
of this set of structure factors gives the folded

version of the electron distribution of the surface
unit cell, which has the same periodicity parallel to
the surface as the bulk structure. An inverse
Fourier transform of just the so-called ‘‘in-plane’’
surface structure factors, corresponding to low
values of L gives the projection of this electron
distribution onto a plane parallel to the surface. In
practice, measurements of ‘‘in-plane’’ data are
quite common. They correspond to measurements
of scattered X-rays at glancing take-off angles to
the surface from the glancing incidence of incom-
ing X-rays. Of course, due to the fact that both
source and detector have to lie outside the plane of
the surface, inevitably there has to be a surface-
normal component of q: However, the value of L

can be kept down to approximately 0.1 or 0.2. This
is usually small enough that the set of such surface
structure factors may be treated as the Fourier
components of a projection of the surface electron
distribution onto a plane parallel to the surface.
The folded structure projected onto a plane parallel
to the surface, calculated from L ¼ 0:2 data by the
Fienup algorithm from this simulated data is
shown as a contour map in Fig. 5 (we choose the
L ¼ 0:2 data since they are generally experimen-
tally measurable, yet of a low enough L value that

their Fourier transform with respect to Miller
indices H and K is practically indistinguishable
from those of L ¼ 0).
We then proceeded to attempt to recover the

true projected electron distribution of a ð2� 2Þ

ARTICLE IN PRESS

Fig. 5. Contour map, calculated from the Fourier transform of

the surface structure factors of Miller index L ¼ 0:2 contribut-
ing to the CTRs of the cð2� 2ÞK=TiO2ð0 0 1Þ surface. The

structure factors were found from the input–output phasing

algorithm described in the text by incorporating calculated

structure factors from the known underlying bulk crystal. To a

good approximation, this represents the surface electron density

projected onto a plane parallel to the surface and folded into a

unit cell of the underlying bulk unit cell. There are 25 equally-

spaced contour levels from 0 to the maximum value.

Fig. 6. Contour map, calculated from the Fourier transform of

the surface structure factors of Miller index L ¼ 0:2 of both the
CTRs and also the SRs of the cð2� 2ÞK=TiO2ð0 0 1Þ surface.
The latter structure factors are calculated from the former by

the iterative algorithm also described in the text, based on

Sayre’s equations. To a good approximation, this represents the

electron density of the surface unit cell projected onto a plane

parallel to the surface. There are 15 equally-spaced contour

levels from 0 to the maximum value.
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unit cell by using the recursion relation (20) to
phase the ‘‘in-plane’’ SR structure factors. In this
case, convergence of the algorithm (20) occurred
after about 10 iterations. The inclusion of both
the CTR- and SR-phased ‘‘in-plane’’ data in the
inverse Fourier transform (21) resulted in the
projected electron distribution shown in Fig. 6.
Comparison of this distribution with that from
structure factors calculated from the atomic model
of the surface used for our test (Fig. 7), and with
the projection (Fig. 3) of the atomic model
assumed in our calculations, shows remarkable
agreement of the main features.

6. Conclusions

We have described a procedure for determining
the distribution of electrons in a surface unit cell
from experimental measurements of the intensities of
crystal truncation and superstructure rods (CTRs
and SRs) in surface X-ray diffraction (SXRD).
The solution requires first the isolation and

retrieval of the amplitudes and phases of the
surface structure factors contributing to the CTRs.
This is done by first recognizing and calculating
the contributions to these CTRs from the generally
known structure of the underlying bulk. An
algorithm that incorporates this knowledge, and

successively constrains the solution to the mea-
sured amplitudes of the CTRs in reciprocal space
and restricts the real-space electron distribution to
be non-negative is used to determine the complex
surface structure factor components of the CTRs,
and hence the folded surface structure. Unlike the
method proposed by Yacoby et al. [15] for
determining this folded structure, we make no
assumptions about the relative rates of variation of
the surface and bulk structure factors.
Our next step is to use an iterative algorithm

based on the tangent formula from Sayre’s
equations to determine the phases of the SRs
from this knowledge of the amplitudes and phases
of the CTR surface structure factors determined at
the earlier step. The combination of the complex
structure factors contributing to the CTRs and
SRs enables the determination of the complete
surface structure, unlike the method of Rius et al.
[16], which phases only the SRs, and is thus only
able to determine the difference between the
unfolded and folded structures. Also, since the
Sayre tangent formula relates the phases of
structure factors to sums of products of pairs
(rather than the triplets of the formula of Rius
et al.) of other structure factors, the algorithm is
much simpler and more computationally tractable,
and leads to a rapid solution in a small number of
iterations.
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