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I. INTRODUCTION

The atomic scale structure of a molecule is generally
determined by the analysis of the distribution of scat-
tered x-rays or electrons. However, the sustained x-ray
or electron fluence needed for image reconstruction would
destroy all high resolution detail if focused on a single
molecule, since resolution varies inversely as the third
or fourth power of fluence1. If the molecules form crys-
tals, the scattered intensities may be greatly amplified by
sharing this fluence over many identical molecules, while
allowing the reconstruction of the periodically averaged
undamaged charge density of a molecule. Unfortunately,
not all molecules of interest do form crystals, and even if
crystallization were possible, the scattered signal would
be sampled only at the Shannon “frequency” of the com-
plex amplitudes, resulting in loss of phase information. If
the scattered intensities from a single molecule could be
measured at their (finer) Shannon angular sampling rate,
the structure of the scatterer could be determined by it-
erative phasing algorithms2. These advantages of signal
amplification, damage reduction for high resolution, and
access to oversampled intensities (allowing solution of the
phase problem) may be combined if the structure of a sin-
gle particle may be determined from diffraction patterns
from many identical particles with neither translational
nor orientational order.

In this paper, we suggest how this may advance practi-
cal applications, such as structure determination of hard-
to-crystallize, but practically important, membrane pro-
teins, which are the targets of some 70% of today’s medic-
inal drugs. A similar idea has been proposed by Kam3,4

for molecules in solution where their orientations are
completely random in 3D. We propose here an applica-
tion to the determination of the structure of a membrane
protein in even more of a natural environment than that
of molecules dissolved in a liquid.

Consider x-ray scattering from identical molecules in
solution. If the scattering is from radiation of pulse
length longer than the rotational diffusion time, τ , of the
molecules, the signal from each molecule will be its rota-

tional average and signal amplification is provided by the
addition of such rotational averages from all illuminated
molecules, as exploited by the technique of small-angle x-
ray scattering (SAXS), from which information about the
molecular shape may be found5–7. Variations in a SAXS
signal are greatest in the region of very small magnitude
scattering wave vector q, where the signal is sensitive
largely to the overall shape of the molecule, rather that
its internal structure. A disadvantage of the latter tech-
nique is that the scatterd intensities are a function of the
single scalar variable of the magnitude, q, of the scatter-
ing vector8.

The increasing availability of intense short-pulse x-
ray sources allows a measurement of a type not possible
before, namely angular fluctuations of intensity about
mean values on rings of constant q from snapshots of
a relatively small number of identical particles, differ-
ing only in random positions and random orientations.
The diffraction patterns may be recorded either from
stationary particles, or more generally with a recording
time shorter than τ . The angular correlation functions
of these intensity fluctuations contain information about
the multi-dimensional diffraction volume of the individ-
ual scatterers3,9, and hence of their internal structure.
More intense x-ray sources also allow a useful signal to
be measured from higher values of q, thus permitting
access to higher resolution structure. Structure recon-
struction from these data requires solutions to two phase
problems: the first to recover a single-particle diffraction
pattern from multiparticle correlations, and the second
to recover the projected electron density from the recon-
structed single-particle diffraction pattern.

II. THEORY

We examine here a case where the molecular orienta-
tions are assumed random only about a single axis, which
is assumed parallel to the incident x-ray beam. As de-
scribed Section IV, this may model e.g. a set of a mem-
brane bound protein molecules randomly oriented about



an axis normal to a cell membrane in a plane perpendic-
ular to the incident beam.

Assuming a flat Ewald sphere, we represent the scat-
tering vector q by a vector normal to an x-ray beam,
assumed incident normal to the membrane (and there-
fore parallel to the plane of the membrane) by its polar
components (q, φj), where the different azimuthal angles
are specified by the subscript j, the scaterred amplitudes
may be represented by the circular harmonic expansion

A(q, φj) =
∑

m

Am(q) exp (imφj) (1)

Assuming mutually coherent scattering, the total scat-
tered amplitude from a set of such molecules k with ran-
dom azimuthal orientations ωk and random positions rk

is

A(q, φj) =
∑

k

∑

m

Am(q) exp [im(φj − ωk)] exp (iq · rk)

(2)

If the resulting scattered intensity at (q, φj) is represented
by I(q, φj) and its azimuthal average by ISAXS(q), the
small angle x-ray scattering (SAXS) intensity, then

I(q, φj) − ISAXS(q) =
∑

kk′

∑

m 6=m′

A∗
m(q) exp (−imφj) exp (imωk) exp (−iq · rk) ×

· · ·Am′(q) exp (im′φj)exp(−im′ωk′) exp (iq · rk′)(3)

The subtraction of ISAXS(q) on the LHS necessitates the
exclusion of the cross terms with m = m′ on the RHS.

The expression (3) enables the evaluation of the angu-
lar pair correlations defined by

C2(q, q
′; ∆φ) =

〈

1

Nφ

∑

j

I ′(q, φj)I
′(q′, φj + ∆φ)

〉

DP

(4)

where Nφ is the number of azimuthal angles φj at which
the intensities are measured, and the angular brackets
denote an average over diffraction patterns (DP),

I ′(q, φj) = I(q, φj) − ISAXS(q) (5)

and

I ′(q′, φj + ∆φ) = I(q′, φj + ∆φ) − ISAXS(q′). (6)

Substituting (3) into (5) and (6), and the resulting
expressions into (4) and performing the average over the
DP yields

C2(q, q
′; ∆φ) = Np

∑

M 6=0

I∗M (q)IM (q′) exp (iM∆φ) (7)

where Np is the number of particles illuminated per
diffraction pattern, and IM (q) the circular harmonic ex-
pansion coefficients of the diffracted intensity of a single

particle and related to the corresponding expansion co-
efficients of the scattered amplitude by

IM (q) =
∑

m

A∗
m(q)AM−m(q). (8)

It should noted that, although each diffraction pattern
is assumed be illuminated by coherent radiation, the in-
terference terms due to the scattering by the different
particles are averaged out by the averaging over the DPs
in (4) to leave C2 a function of only single-particle quanti-
ties. The extraction of the quantities IM (q) would enable
the reconstruction of the single-particle DPs.

As a first step towards that end it will be noted that
the angular Fourier transforms of the q-diagonal pair cor-
relations are

BM (q, q) =
1

Nφ

∑

∆φ

C2(q, q, ∆φ)e−iM∆φ

= NpIM (q)I∗M (q) = Np|IM (q)|2. (9)

This is just an expression of the well-known result that
the Fourier transform of an autocorrelation is the square
modulus of the Fourier transform of the original function.
The fact that there are contributions from Np particles of
random orientations just gives a scaling factor of Np since
the autocorrelations, averaged over many diffraction pat-
terns, tend towards an orientationally independent quan-
tity. Thus, just taking the square roots of the quantities
BM (q, q) enables the determination of the magnitudes
of the circular-harmonic expansion coefficients (up to an
unimportant scaling factor) via

|IM (q)| ∝
√

BM (q, q) (10)

It will be noted that a reconstruction of the intensity
distribution of a single particle can be performed via the
equation

I(q, φ) =
∑

M

IM (q) exp (iMφ) (11)

where the IM (q) are a set of complex coefficients. Thus,
the problem of reconstructing the single-particle diffrac-
tion pattern has some analogies to that of recovering the
electron density of the scattering object from the inten-
sities of the diffraction pattern. In both cases it is neces-
sary to find the phases associated with the magnitues of
a set of complex numbers. The latter problem is the cel-
ebrated phase problem of crystallography, whose solution
has led to at least one Nobel Prize10. More recently, this
area of work has been rejuvenated by the development of
iterative phasing algorithms2 which work by alternately
satisfying constraints in real and reciprocal space.

III. PHASING THE CIRCULAR HARMONIC

EXPANSION COEFFICIENTS

Kam4 suggested that the phases of the IM (q) coef-
ficients may be found by constructing from the exper-



imental data triple angular correlations since their an-
gular Fourier transforms are sensitive to the phases. In
a previous paper11, we have demonstrated the effective-
ness of such an approach for a diffraction pattern with
a mirror line, when the IM (q) coefficients become real,
so their only ambiguity is one of sign. In this case, the
correct combination of signs may be found by an exhaus-
tive search through all possible sign combinations. For
diffraction patterns without such a mirror line, however,
it is necessary to find a set of real numbers between 0
and 2π representing the unknown phases. In principle
this may be solved by a global optimization routine such
as simulated annealing, but we found such a process to
be very time-consuming and not so reliable. We suggest
here a distinct approach to finding these phases in an
analogy with the iterative phasing algorithms referred to
above.

First note that, in general, the angular Fourier trans-
form of (7) may be written

BM (q, q′) =
1

Nφ

∑

∆φ

C2(q, q
′) exp (−iM∆φ)

= NpIM (q)I∗M (q′). (12)

Since the LHS is a quantity that may be found from ex-
periment, and the magnitudes |IM (q)| of all the circular-
harmonic expansion coefficients may be determined, the
phases of these coefficients corresponding to the same val-
ues of M but different values of q are not independent. In
fact, there are only Mmax − 1 independent phases that
need to be determined (where Mmax is the maximum
value of the azimuthal quantum number used in the cal-
culations).

The phase recovery process begins by choosing a ref-
erence resolution ring, specified by, say q′. We defined
the reference ring to be a central one, half way between
the outermost and innermost. The phases of the IM (q′)’s
are found by first associating random phases with these
coefficients. Eq. (11) may then be used to find a first
estimate of the intensities of the resolution ring q′ of the
diffraction pattern. The resulting intensities I(q′, φ) are
then sorted by magnitude and the signs (they are real
numbers by construction) of a certain fraction, say 5%,
of lowest intensity are flipped, according to the prescrip-
tion of Oszlányi and Süto12. An inverse Fourier trans-
form then yields new (complex) values of the IM (q′) co-
efficients. The phases of these calculated coefficients are
then associated with the amplitudes |IM (q′)| found from
the Fourier transforms of the measured angular correla-
tions via (9) and (10). Another (forward) Fourier trans-
form is then performed to find an improved estimate of
I(q′, φ) and the entire process iterated to convergence.

Once the phases of the IM (q′) coefficients have been
found by this method, in principle the phases of the
IM (q) coefficients of all other resolution rings q follow
from Eq. (12). In practice this may be somewhat unre-
liable since the phases found by the above procedure for
the reference resolution ring may not be perfect. They

may be least reliable for values of M for which |IM (q′)| is
small. Therefore we use this method to fix the phases of
IM (q)’s for the nearest neighbor resolution rings q where
|IM (q′)| is not too small. Nevertheless, this is a very im-
portant step: without it the correct registries of the in-
tensity distributions I(q, φ) on different resolution rings
could not be found.

Having thus estimated both the amplitudes and phases
of the IM (q) coefficients for these values of M (let’s de-
note them by M ′) for the neifgboring resolution rings q,
the phases of the remaining values of M 6= M ′ can be
found by repeating the above the iterative phasing al-
gorithm to those resolutions rings q in turn, fixing both

the amplitudes and phases for M = M ′, and only the
amplitudes for M 6= M ′. Using this method of phas-
ing neighboring resolution rings, the phasing process is
propagated inwards and outwards to the neighboring res-
olution rings in turn, using its phased nearest neighbor
as reference. Thus the reference phases in each ring are
determined by the phases found for its neighboring ring
by a combination of Eq.(12) and the flipping algorithm.

The real and imaginary parts xr(t) and xi(t), respec-
tively, of the Fourier transforms of a causal function of
the form X(ω) where X(ω) is zero for ω < 0 are known to
be related by Hilbert transforms (e.g.13). At least for a
diffraction pattern with C2 symmetry, as here, this rela-
tionship may be exploited to refine the phases obtained
with the flipping algorithm. (Friedel’s Law guarantees
C2 symmetry for a flat Ewald sphere. In the present
case the symmetry of the molecular projection guaran-
tees this even for a curved Ewald sphere.) The (real)
intensities I(q, φ) of each resolution ring q play the role
of the function X(ω), while the real and imaginary parts
of its complex Fourier coefficients IM (q) may be identified
with xr(t) and xi(t), respectively. Although I(q, φ) is not
strictly a causal function, if the diffraction pattern has
C2 symmetry, it is a two-fold redundant function, which
implies I(q, φ + π) = I(q, φ). Thus the non-zero Fourier
coefficients IM (q) may be found by taking I(q, φ) = 0 for
e.g. negative φ (assuming φ is defined from −π to π).
This means that the IM (q)’s may be related to Fourier
transforms of a causal function, and thus their real and
imaginary parts are related by Hilbert transforms. In
the phasing of the coefficients IM (q) we are faced with
a situation where both the amplitudes and phases (and
therefore the real and imaginary parts) of the IM (q)’s
are known for M = M ′, while only the amplitudes are
known for M 6= M ′. By constraining the known portions
of the real and imaginary parts of IM (q) an iterative al-
gorithm that repeatedly relates the real and imaginary
parts of IM (q) allows the recovery of the real and imag-
inary parts of all the IM (q) coefficients on convergence.
We used this method to refine the initial estimates of
the phases of the IM (q) coefficients found by the flipping
algorithm above. More details of this procedure will be
described elsewhere14.



FIG. 1: Amplitudes of a simulated diffraction pattern from
x-rays incident down the central pore of a single K-channel
protein molecule up to about 6 Å resolution. Since the am-
plitudes of the central pixels of this diffraction pattern and
those of Figs. 4, 5 and 6 are overwhelmingly dominant, they
have been removed for easier visibility of higher-resolution
amplitudes. The real space images of Figs. 2, 3, and 6 were
calculated from these (phased) amplitudes (with central pix-
els included). All figures in this paper are displayed by means
of a linear gray scale with darker shading representing higher
values.

IV. APPLICATION TO MODEL OF

K-CHANNEL MEMBRANE PROTEINS IN SITU

The K-channel protein forms a channel for the micro-
transport of K ions through a cell membrane e.g. in the
process of neurotransmission15. To a good approxima-
tion, the ion channel has to remain perpendicular to the
membrane for it to perform its function. However, the
different K-channel molecules in a given membrane may
have random angles of orientation about the membrane
normal. The analysis above therefore appears well suited
to extracting the projected electron density of the indi-
vidual molecules from diffraction patterns formed by il-
luminating groups of such randomly oriented membrane-
bound molecules in situ.

Fig. 1 shows the central part of the diffraction pattern
of a single K-channel protein molecule in an orientation
with incident x-ray beam parallel to its central pore, as
simulated with the structure data in entry 3e8f of the
Protein Data Bank (PDB), using the usual structure fac-
tor fomula

F (qx, qy, ω0) =
∑

j

fj(qx, qy)ei(qxxj+qyyj) (13)

where fj(qx, qy) is the form factor of an atom j whose
coordinates projected onto a plane perpendicular to the
incident beam are (xj , yj), and (qx, qy) are the corre-

FIG. 2: Electron density of the K-channel protein projected
in the direction parallel to its central pore as calculated from
a Fourier transform of the scattering amplitudes of Fig. 1
with phases from an iterative phasing algorithm.

sponding 2D reciprocal-space coordinates, and ω0 rep-
resents the particular molecular orientation assumed
for these simulations. The projected electron density
(Fig. 2) to the resolution of the diffraction pattern
was then computed from the inverse Fourier transform
of |F (qx, qy; ω0)| (calculated up to a maximum value of

q =
√

q2
x + q2

y of 2.0 Å−1, but multiplied by an apodiz-

ing Gaussian window function to reduce artifacts) with
phases computed by an iterative phasing algorithm12,16

Fig. 3 shows the real space image reconstructed by
such an algorithm with information only about the an-
gular pair correlations (4) of the diffraction pattern of
Fig. 1.

We next simulated 10000 diffraction patterns each
containing 10 such randomly randomly oriented model
molecules. The theory of section 2 shows that, if a suffi-
cient number of DPs are averaged over in (4), the result
of Eq, (7) is obtained for all random positions and ori-
entations of the individual particles. For the parameters
of our simulation, interference fringes from interparticle
interference are smaller than a detector pixel and could
therefore be neglected. Therefore, although the simula-
tions that follow assume a different set of random particle
orientations per DP, they make the assumption that it is
not necessary to simulate random interparticle vectors,
and that each DP may be simulated by

I(qx, qy) =
∑

k

|Fk(qx, qy; ωk)|2 (14)

where, as before, ωk is a random molecular orientation.
A typical pattern from 10 such randomly positioned K-
channel proteins, randomly oriented about the z-axis
(normal to the (x,y) plane) is shown in Fig. 4.



FIG. 3: Same electron density as in Fig. 2, except that pro-
jected elecftron density is calculated from a diffraction pattern
recovered from the angular correlations of Fig. 1 with phases
from iterative phasing.

FIG. 4: Typical simulated diffraction pattern from 10 ran-
domly positioned and oriented model K-channel proteins.

We seek to demonstrate the recovery of the model pro-
jected electron desnity of a single protein from a large
number of diffraction patterns of the form of Fig. 4,
each from different random orientations of 10 molecules.
We do this in two steps: (1) recovery of a single-particle
diffraction pattern from these multiparticle diffraction
patterns by the methods of Secs. II and III above and
(2) the recovery of the projected electron density from
this by a conventional iterative phasing algorithm.

The recovered single-particle diffraction pattern from
the average of the angular correlations of 10000 such pat-
terns in shown in Fig. 5. Simulated Poisson noise pro-

FIG. 5: A single particle diffraction pattern reconstructed
from the average of the angular correlations of intensities of
10000 diffraction patterns of the form of Fig. 4.

duces an unimportant peak at the origin of the correla-
tion functions C2.

V. FROM RECONSTRUCTED DIFFRACTION

PATTERN TO PROJECTED ELECTRON

DENSITY

We recover (Fig. 6), from the reconstructed diffraction
pattern of Figs. 5, the projected electron density of an
individual protein molecule after ∼ 100 iterations of the
charge-flipping12 and phase-shifting algorithms16, which
do not impose a fixed region of compact support17.

The quality of the recovered single-particle diffraction
pattern (Fig. 5) is good enough to allow this phasing
algorithm to recover at least a low resolution projected
electron density of the original object (in this case the K-
channel protein) with sufficient detail to discern some of
the internal features of that projected electron density.
Further improvements of the reconstruction algorithm
may allow higher resolution information to be found.

VI. DISCUSSION

The present paper illustrates the principle of an alter-
native route to molecular structure determination than
diffraction from either crystals or single molecules that
goes beyond the capabilities of conventional analysis of
small-angle x-ray scattering (SAXS) data since it involves
the analysis of a much richer data set. For a given probe
size at the sample, by simultaneously scattering off sev-
eral copies of the molecule, the number of scattered pho-
tons per detector pixel is increased substantially com-
pared to single-molecule diffraction experiments. Yet, at



FIG. 6: Projected electron density of a single molecule of the
K-channel membrane protein reconstructed from the diffrac-
tion pattern of Fig. 5 by an iterative phasing algorithm.

the same time, the relaxation of the condition of molec-
ular alignment permits application to molecules, such as
many membrane proteins, which do not crystallize.

We demonstrate that averaging the angular correlation
functions of many diffraction patterns each from many
randomly oriented copies of the molecule allows the re-
construction of a diffraction pattern of a single molecule
of sufficient quality to allow an iterative phasing algo-
rithm to reconstruct an accurate real-space image of the
molecule.

The Fourier transform of the autocorrelation functions
of each resolution ring yields the magnitudes |IM (q)| of
the circular harmonic expansion coefficients of the inten-
sities. The earlier method of finding the phases of these
coefficients relied on the evlauations also of so-called an-
gular triple correlation functions4,11. It was found11 that
the construction of converged triple correlation functions
required the averaging of data from many more measured
diffraction patterns than required to construct converged
angular pair correlation functions, The algorithm pre-
sented here needs the experimental data of only the an-
gular pair correlations, as the phases of these coefficients
are found directly from their magnitudes as in algorithms
for the usual phase problem in the for the recovery of
an object’s electron density from the magnitudes of its
diffracted intensities. The liberation from the need to
measure a much larger number of diffraction patterns to
obtain converged triple correlations makes for a much
less costly experiment due to need for less beamtime.
The computational requirements for finding the phases
of IM (q) by an iterative phasing algorithm are also much
reduced compared to the use of e.g. a simulated anneal-
ing algorithm to optimize the agreement between exper-
imental and thoertical triple correlations, as previously.

The results are also relevant also to the kind of
“diffract and destroy” approach to biomolecular struc-
ture determination18–20 with an x-ray free electron laser
(XFEL), where measurements of diffraction from single
molecules have been proposed. In this case, an aver-
age of the angular correlation functions over many such
very weak diffraction patterns allows a building up of a
more statistically reliable signal from which it has been
proposed that the diffraction volume of an individual
molecule may be built up9. Since the number of val-
ues of the angular correlation functions do not grow as
the data of more diffraction patterns are allowed to con-
tribute the the average, this would also be expected to
provide an efficient method of data reduction of the mil-
lions of diffraction very weak diffraction patterns that are
typically measured in such experiments. In addition, the
SAXS background, which arises from uncorrelated scat-
tering by different particles, and whuich needs to be sub-
tracted out in the present treatment, is entirely absent,
as is scattering from membrane or solution atoms.

The method may be applicable also to x-ray fluo-
rescence patterns from a specific atomic species buried
deeply within large molecules21 (e.g. the Fe atom in
haemoglobin) in solution. Such patterns would be most
sensitive to intramolecular scattering, less to that from
its surroundings. This may allow the reconstruction of
the 3D diffraction volume of an individual molecule from
that of many randomly oriented ones, and hence of the
molecular structure, without too much interference from
solvent (or membrane) scattering.

VII. CONCLUSIONS

Advances in technology, such as fast column read-out
area detectors, brighter sources, shorter pulses, and zone-
plate focusing, have greatly improved the experimental
conditions for such experiments. This has been demon-
strated recently by Wochner et al.22, who suggested the
possible use of angular correlation measurements to re-
veal hidden symmetries of short-range-order which are
not apparent in the typical ring diffraction patterns of
disordered matter from which what is usually analyzed
is just the radial intensity distribution I(q), otherwise
known as the small-angle x-ray scattering (or SAXS)
data. The present paper shows how information about
not just the local symmetries, but even the detailed struc-
ture of the microscopic structural units may be found
from the angular correlations.
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