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The discovery that the phase problem of diffraction from non-periodic objects

may be solved by oversampling the diffraction intensities in reciprocal space

with respect to a Nyquist criterion has opened up new vistas for structure

determination by diffraction methods. A similar principle may be applied to the

problem of surface X-ray diffraction (SXRD), where, owing to the breaking of a

crystal periodicity normal to its surface, diffraction data consist of a set of

superstructure rods (SRs) due to scattering from the parts of the surface whose

structure is different from that of the truncated bulk and of crystal truncation

rods (CTRs), formed by interfering contributions from the surface and the bulk.

A phase and amplitude recovery and diffraction image generation method

(PARADIGM) is described that provides a prescription for finding the

unmeasured amplitudes and phases of the surface contributions to the CTRs

in addition to the phases of the SRs, directly from the diffraction data. The

resulting ‘diffraction image’ is the basis of a determination of the previously

unknown multidomain structure of Sb/Au(110)–
p

3 � p
3R54.7�.

1. Introduction

Owing to the relatively deep penetration of X-rays into a

sample, the systematic use of X-rays for the study of surfaces

did not occur until relatively recently (Andrews & Cowley,

1985; Robinson, 1986), with the development of the technique

of surface X-ray diffraction (SXRD). Unlike the case of the

crystallography of bulk samples, where X-rays are scattered

into particular directions specified by reciprocal-lattice points,

the distribution of scattered X-rays in SXRD forms a set of

rods in reciprocal space, known as crystal truncation rods

(CTRs), which have both surface and bulk contributions, and

superstructure rods (SRs) which arise purely from the surface.

The relative dispositions of CTRs and SRs give an indication

of the relative configurations of the surface and bulk unit cells.

An analysis of the distribution of measured intensities along

these diffraction rods can give detailed information about the

atomic scale structure of the sample.

Since it is straightforward to calculate the intensity distri-

butions of CTRs and SRs for a given model of a crystal

surface, the usual method of determining a surface structure is

by repeated comparisons of simulated SXRD data with

experiment for a series of model structures. The degree of the

fit between simulation and experiment is determined by an

objective measure of discrepancy, e.g. a �2 value of a least-

squares fit. In this conventional, trial-and-error, method, the

correct structure is taken as the one that minimizes the

measure of discrepancy. If a good guess can be made of the

approximate structure, it is possible to automate the refine-

ment of a number of parameters, such as the positions and

occupancies of the atoms in the postulated structure, the

vibrational amplitudes, the relative abundances of each of the

symmetry-related domains and parameters characterizing the

roughness of the surface (Vlieg, 2000).

However, owing to an almost unlimited number of possible

starting models, there is no guarantee that an appropriate one

may be guessed that will refine to the correct structure. Thus,

there is a need for the development of a general method of

extracting, directly from the measured data, at least an

approximation to the electron density of the unknown surface

unit cell that can suggest a suitable initial model.

In the crystallography of bulk samples, the square roots of

the measured intensities of Bragg spots are proportional to the

amplitudes of Fourier coefficients of the electron density of

the unit cell. An approximation to that electron density may

be found by an inverse Fourier transform if approximate

phases may be assigned to each of these Fourier coefficients.

In protein crystallography, the three most commonly used

methods for assigning these phases are ones that require extra

experimental measurements, as in the techniques of multiple

isomorphous replacement (MIR) (Green et al., 1954; Blow &

Crick, 1959) and multiwavelength anomalous dispersion

(MAD) (Hendrickson, 1991; Leahy et al., 1992); or by identi-

fication of a known structure similar to the one being sought,
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as in the technique of molecular replacement (Rossmann &

Blow, 1962).

For crystals with a smaller number of atoms per unit cell,

techniques have been developed that do not require such

extra experimental data. They are known collectively as direct

methods (Woolfson, 1961; Giacovazzo, 1980) and exploit extra

relations between measured scattered amplitudes and

unknown phases arising from restrictions on the form of the

electron density due to its reality, positivity and atomicity, to

estimate these phases by purely theoretical arguments. Initial

estimates of the phases are usually refined by an iterative

process of density modification (see e.g. Drenth, 1994) that

alternately satisfies constraints in real and reciprocal space

and has been termed Fourier recycling. More recently,

Oszlányi & Süto�� (2004) have suggested an ab initio method of

phasing high-resolution X-ray crystallographic data from

small molecules by a form of Fourier recycling that involves

charge flipping in real space. As pointed out by Millane (1990),

these approaches are closely analogous to methods of phase

retrieval in optics. In crystallography, the aim of such methods

is to find an electron density of sufficiently high quality to

enable the building of an initial atomistic model of the

structure. The latter may be refined by a �2 fit to the data.

It was shown by Saldin et al. (Saldin, Harder, Shneerson &

Moritz, 2001; Saldin, Harder, Vogler et al., 2001) that the

electron density of a surface may be recovered from SXRD

data by a Fourier recycling method together with information

about the crystal structure of the bulk of the material. The

former work involved a modification of the real-space surface

electron density at each iteration by the ‘maximum-entropy’

prescription of Collins (1982), while the latter applied a

positivity constraint to the recovered electron density.

Recently, such an algorithm was successfully applied to the

recovery of the surface electron density of clean Au(110)

(Lyman et al., 2005) and Sb-covered Au(110) from experi-

mental data. When covered by Sb adatoms, the Au(110) face

successively exhibits several different surface reconstructions.

Using low-energy electron diffraction (LEED), we found (in

the Wood notation, see below) a cð2 � 2Þ, a ð ffiffiffi
3

p � ffiffiffi
3

p Þ
R54.7�, and a pð5 � 6Þ phase at Sb coverages of about 1

2,
2
3 and

>1 monolayer, respectively. These phases had not been

reported in the literature before. We have measured SXRD

data for these three phases. The use of our direct method for

the determination of the structure of the cð2 � 2Þ phase is

published elsewhere (Lyman et al., 2006). We are currently

investigating the structure of the pð5 � 6Þ phase. The present

paper describes the determination of the structure of the

ð ffiffiffi
3

p � ffiffiffi
3

p Þ R54.7� phase with coverage �Sb ¼ 2
3. In these

applications to experimental data, the real-space electron

density was made to satisfy a support constraint (Fienup, 1978;

Miao et al., 1999) at each iteration.

The plan of the paper is as follows: first we discuss what may

be deduced about the structure from an observation of the

pattern of the so-called ‘in-plane’ Bragg reflections. We will

see that this pattern can arise from the superposition of

diffraction patterns from four symmetrically related domains

of ð ffiffiffi
3

p � ffiffiffi
3

p Þ surface superstructures. As a first step towards

the determination of the internal structure of the ð ffiffiffi
3

p � ffiffiffi
3

p Þ
surface unit cells, we calculate a ‘partial’ Patterson function

from the intensities of the superstructure diffraction rods. We

point out that this function does not contain enough infor-

mation to distinguish between alternative models. Next, we

determine an approximate electron-density map of the surface

unit cell by our direct method applied to the measured data.

This immediately suggests a model in which two diagonal rows

of Sb adatoms alternate with a row of Au adatoms, all adatoms

residing in hollow sites on the surface. Lastly, we apply a

conventional refinement method for the final structure solu-

tion.

2. Diffraction conditions

The aim of surface X-ray diffraction is to determine the atomic

scale structure of the outermost few atomic layers on a surface.

The structure of the deeper atomic layers is not the primary

target of investigation – rather, it is usually assumed known. A

crystalline sample may be regarded as periodic in the plane

parallel to the surface, but of course any periodicity perpen-

dicular to the surface is broken by the very existence of the

surface. Nevertheless, the relative atom positions in the

surface may be specified by a coordinate system of two unit

vectors (say a1 and a2) of the bulk lattice parallel to the

surface) and one (say a3) equal to a lattice vector of the bulk in

a direction perpendicular to the surface. A set of basis vectors

fAg of the reciprocal lattice is defined in terms of these real-

space basis vectors fag via

ai �Aj ¼ �ij: ð1Þ
The significance of the basis vectors fAg is that the complex

scattered amplitude

Fq ¼ jFqj expði�qÞ ð2Þ
from a repeat unit of the surface (the surface structure factor)

may be regarded as a function of the reciprocal-space scat-

tering vector q defined in terms of the basis vectors fAg by

q ¼ hA1 þ kA2 þ lA3; ð3Þ
where ðhklÞ are a set of Laue indices.

With this definition of Laue indices, it follows that Bragg

diffraction conditions will permit non-zero values of Fq only

for scattering vectors q specified by integer values of Laue

indices h and k if the lateral periodicity is the same as that of

the bulk, and by specific fractional values of either or both of

these indices if the surface unit cell is larger than (but still

commensurate with) the bulk unit cell. As for the third Laue

index, the breaking of the periodicity in the direction normal

to the surface removes any restriction on the values of l for

permitted scattering vectors. Thus, non-zero values of Fq are

found along a set of rods in reciprocal space parallel to A3.

Those corresponding to integer values of h and k (which have

scattering contributions from the bulk of the crystal as well as

the surface) are the CTRs and those specified by fractional

values of either h or k (which arise solely from scattering by

the surface region) are the SRs.
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3. Experiment

Prior to analysis by SXRD, initial experiments were carried

out at the University of Wisconsin–Milwaukee to establish the

symmetries induced by Sb adsorption (using low-energy

electron diffraction, LEED) and to correlate the Sb coverage

with each of the observed phases (using X-ray photoelectron

spectroscopy, XPS). XPS analysis (Seah, 1983) from samples

exhibiting a ð ffiffiffi
3

p � ffiffiffi
3

p Þ LEED pattern (not shown) yielded an

Sb coverage of 0.8 � 0.15 ML (ML = monolayer, 1 ML =

8.5 � 1014 atoms cm�2), with no impurity species present.

Details of the analysis have been published elsewhere (Lyman

et al., 2006). The exact Sb coverage of the surface for which an

extensive SXRD data set was collected was not accurately

determined due to the lack of an XPS facility in the SXRD

endchamber.

Quantitative structural measurements were made using

SXRD at beamline X22C at the National Synchrotron Light

Source (NSLS) at the Brookhaven National Laboratory. The

X22C endstation (Gibbs et al., 1990) is equipped with a 6-circle

diffractometer for SXRD measurements, and an UHV

chamber with a cylindrical mirror analyzer for Auger electron

spectroscopy.

The electropolished Au(110) single crystal had a bulk

mosaic spread of <0.04�. Its surface was cleaned by standard

Arþ sputtering and annealing cycles, whereupon it exhibited

the well known (2 � 1) reconstruction (Moritz & Wolf, 1979).

Monolayer quantities of Sb (99.9999% purity) were then

deposited from an effusion cell operated at 680 K. The sample

temperature was monitored using a W–WRe thermocouple

attached directly to the sample. Both deposition onto a RT

substrate with post-annealing to 700 K and deposition onto a

substrate held at 700 K were investigated. In either case, the

samples were typically held at 700 K for 5 min after deposition

ceased, and then slowly cooled. This annealing temperature is

near the (2 � 1) ! (1 � 1) deconstruction temperature

(735 K) (Keane et al., 1991; Sprösser et al., 1991) and above the

Sb:Au eutectic temperature (630 K) (Moffat, 1986; Chevalier,

1989), but below the temperature at which the clean surface

roughens (�784 K) (Keane et al., 1991). Thus, the surface

system had sufficient mobility and thermal activation to reach

its quasi-equilibrium RT state upon slow cooling.

Radiation of 10.8 keV was used to acquire the SXRD data.

Since we are considering a (110) surface, it is convenient to

define a unit cell of the bulk in terms of two unit vectors

parallel to the surface, a third perpendicular to it. Thus, it is

convenient to define a real-space bulk unit cell by the unit

vectors a1 ¼ 1
2 ½�1110�cub and a2 ¼ ½001�cub, parallel to the surface,

and a3 ¼ 1
2 ½110�cub, perpendicular to it, where the subscript

refers to the conventional f.c.c. cell. For Au, the magnitudes of

these bulk unit vectors are 2.88, 4.07 and 2.88 Å, respectively.

By equation (1), the reciprocal-space coordinate system may

be specified by A1 ¼ ð�1110Þcub, A2 ¼ ð001Þcub and A3 ¼ ð110Þcub.

In this frame, the index l refers to momentum transfer q?
perpendicular to the surface plane, while the indices h and k

refer to in-plane momentum transfer qk. The angle of inci-

dence was kept equal to the exit angle to allow access to

relatively large values (’4 Å�1) of q?, while still accessing up

to qk ’ 10 Å�1. The measured structure factors were

corrected (Vlieg, 1997) for geometrical and polarization

effects. Approximately 3050 surface structure-factor ampli-

tudes were measured, covering 1228 non-equivalent reflec-

tions distributed along 88 (hk) rods. In terms of the Laue

indices, this encompassed the range 0 	 h 	 4, 0 	 k 	 4 and

0 	 l 	 1:8. Both CTRs and SRs were recorded over this

range. The measured intensity variations of a couple of typical

CTRs and SRs and their estimated errors are denoted by the

vertical bars in Figs. 1 and 2, respectively.

4. Surface unit cell from ‘in-plane’ diffraction pattern

Owing to the breaking of translational symmetry normal

to a surface, a surface unit cell may be defined by just

two unit vectors, b1 and b2, with directions parallel to the

surface. In general, due to the presence of adsorbates, or of

surface reconstruction, these vectors may differ from the

corresponding vectors a1 and a2 of the bulk. Since the
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Figure 1
Two sample crystal truncation rods (CTRs) with ðh; kÞ Laue indices ð0; 3Þ
and ð3; 1Þ. The measured data and their errors are denoted by the vertical
bars. The ordinate is specified by a logarithmic scale. The open circles
represent the fits to this data by the PARADIGM. The best fit from a
conventional atomic model based refinement with the ROD program
(Vlieg, 2000) is indicated by the solid line.

Figure 2
Two sample superstructure rods (SRs) with ðh; kÞ Laue indices
ð10=3; 5=3Þ and ð4=3; 5=3Þ. The measured data and their errors are
denoted by the vertical bars. The open circles represent the fits to this
data by the PARADIGM. The best fit from a conventional atomic model
based refinement with the ROD program (Vlieg, 2000) is indicated by the
solid line.
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corresponding surface and bulk vectors may differ, not only in

magnitude but also in direction, the most general relationship

between these vectors may be specified by a (2 � 2) matrix.

However, in cases where the angles between b1 and a1 on the

one hand, and between b2 and a2 on the other, are equal, a

more transparent convention, known as the Wood notation, is

more commonly used. Since, for the surface structure studied

here these conditions hold, we specify our surface by the

version of the Wood notation (Wood, 1964) in which a surface

structure is specified by the general formula

A=SðhklÞ � i
b1

a1

� b2

a2

� �
R�; ð4Þ

where A represents the chemical formula of any overlayer, S

that of the substrate, ðhklÞ specify Miller indices of the

substrate surface, i may take the values p for a primitive, or c

for a centered overlayer unit cell, b1 and b2 are magnitudes of

the surface unit vectors, and a1 and a2 those of the corre-

sponding bulk unit vectors. In the same formula, R� indicates

a rotation through an angle � of the surface unit cell with

respect to the bulk unit cell. In this notation, A= is dropped if

there is no overlayer, and the symbol i is often dropped for a

primitive surface unit cell.

Non-zero diffraction intensities were found along rods with

in-plane Laue indices h ¼ m
3 and k ¼ n

3, where m and n are

both integers, and h and k are either both integers (CTRs) or

both non-integers (SRs). Fig. 3 is a schematic diagram of the

observed in-plane diffraction pattern (i.e. that corresponding

to l ¼ 0). The diffraction intensities were observed to have the

same p2mm symmetry as the Au bulk. This diffraction pattern

is consistent with a surface reconstruction in which the surface

unit cells are similar rectangles to that of the bulk unit cell, butffiffiffi
3

p
times larger in linear dimensions and rotated by 54.7�

relative to the latter [hence the specification of the surface in

the full Wood notation (4) as Sb/Au(110)–(
ffiffiffi
3

p � ffiffiffi
3

p ÞR54:7�].

Half of the superstructure reflections (Fig. 3, unfilled circles

with thick outline) can be accounted for by having domains

(type 1) in which the surface lattice vectors are rotated 54.7�

clockwise from the bulk lattice vectors (Fig. 4); the other half

(Fig. 3, unfilled circles with thin outline), requires domains

(type 2) in which the rotation is in the counterclockwise sense.

Features in such surface unit cells line up to form rows parallel

to one of the two diagonals of the bulk unit cells (Fig. 5).

An alternative way to describe the reconstruction is to have

rectangular surface unit cells with the size and orientation of a

ð3 � 3Þ array of bulk unit cells (Fig. 4). Reconstruction with

such surface unit cells, in general, produces non-zero diffrac-

tion intensities for all reflections with in-plane Laue indices

h ¼ m
3 and k ¼ n

3, where m and n are both integers. CTR

reflections have integer values for both h and k; whereas SR

reflections have non-integer values for either or both of the in-
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Figure 3
Schematic diagram of our observed diffraction pattern. Filled and unfilled
circles denote crystal truncation rod (CTR) and superstructure rod (SR)
reflections, respectively. Unfilled circles with thick and thin outlines
represent SR reflections arising from surface domains with different
orientations. The two types of surface domains are referred to as type 1
(thick outline) and type 2 (thin outline) in the main text.

Figure 4
Real-space unit cells. The rectangle at the top left corner with dimensions
a � ffiffiffi

2
p

a represents a bulk unit cell. The rotated rectangle with
dimensions

ffiffiffi
3

p
a � ffiffiffi

6
p

a is a type-1 ð ffiffiffi
3

p � ffiffiffi
3

p Þ surface unit cell. Its sides
make angles 54.7� with those of the bulk unit cell. Finally, the ð3 � 3Þ
surface unit cell has the size and orientation of a ð3 � 3Þ array of bulk unit
cells.

Figure 5
Real-space features that are consistent with the observed diffraction
pattern line up to form rows parallel to one of the two diagonals of the
bulk unit cells. The arrangement shown here is referred to as type 1 in the
main text.
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plane Laue indices. For this general ð3 � 3Þ diffraction pattern

to reduce to the one observed experimentally, certain extinc-

tion conditions must be met. These conditions arise for the

following reasons: as pointed out before, the contents of the

ð3 � 3Þ surface unit cell in real space must be such that

features form rows parallel to one of the two diagonals of the

bulk unit cells, resulting in the same arrangement as in the

previous ð ffiffiffi
3

p � ffiffiffi
3

p Þ description (Fig. 4). If only type-1 surface

unit cells are present (Fig. 5), the surface structure factor of

reflection ðhklÞ takes the form

SðhklÞ ¼
P

j

fj

�
exp½2�iðhxj þ kyj þ lzjÞ�

þ expf2�i½hðxj þ 1Þ þ kðyj � 1Þ þ lzj�g
þ expf2�i½hðxj þ 2Þ þ kðyj � 2Þ þ lzj�g

�
¼ f1 þ exp½2�iðh � kÞ� þ exp½2�ið2h � 2kÞ�g
�P

j

fj exp½2�iðhxj þ kyj þ lzjÞ�; ð5Þ

where the sum is over all inequivalent atoms j, with form

factors fj, within a ð3 � 3Þ surface unit cell, and coordinates

ðxj; yj; zjÞ are expressed as fractions of the dimensions of a

bulk unit cell. Thus, intensity of reflection hkl is non-zero only

when

ðh; kÞ ¼ ðm; nÞ or m � 1
3 ; n � 1

3

� �
; ð6Þ

where m and n are both integers. Similarly, if only type-2

surface unit cells are present, intensities of only reflections hkl

with

ðh; kÞ ¼ ðm; nÞ or m � 1
3 ; n 
 1

3

� �
; ð7Þ

where m and n are both integers, will be non-zero. Both types

of surface unit cell must be present to give the observed

diffraction pattern. The observation of a diffraction pattern of

p2mm symmetry suggests the existence of four symmetrically

related domains of ð ffiffiffi
3

p � ffiffiffi
3

p Þ unit cells. Possible arrange-

ments of atoms in the equivalent (3�3) unit cells are illu-

strated in Fig. 6. For a multidomain system, where domain

sizes are greater than the coherence length of the X-ray probe,

measured intensities fIg are incoherent averages of contribu-

tions from the various domains:

I ¼ 1

D

XD

d¼1

jbðdÞ þ sðdÞj2: ð8Þ

Here D is the number of domains present, and bðdÞ and sðdÞ are

respectively contributions to structure factors from the bulk

and the surface layer of domain d. In particular, for the

present case of four domains, in general,

I ¼ 1
4 ðjbð1Þ þ sð1Þj2 þ jbð2Þ þ sð2Þj2 þ jbð3Þ þ sð3Þj2 þ jbð4Þ þ sð4Þj2Þ:

ð9Þ
The four domains have the same underlying bulk and there-

fore the same bulk contributions to structure factors:

bð1Þ ¼ bð2Þ ¼ bð3Þ ¼ bð4Þ ¼ b, say. The four surface contribu-

tions form two two-dimensional inversion pairs (i.e. x ! �x,

y ! �y), thus for in-plane reflections (l ¼ 0), using the

notations introduced in Fig. 6, we have sð4Þ ¼ sð1Þ� for the two

type-1 domains and sð3Þ ¼ sð2Þ� for the two type-2 domains.

Thus, equation (9) becomes

Iðhk0Þ ¼ 1
4 ðjb þ sð1Þj2 þ jb þ sð2Þj2 þ jb þ sð2Þ�j2 þ jb þ sð1Þ�j2Þ:

ð10Þ
For CTR reflections where b 6¼ 0, the contributions to inten-

sities from the two type-1 domains are therefore not the same.

Similarly for the two type-2 domains. However, it is important

to note that, e.g. for in-plane SR reflections arising from type-1

domains, equation (10) reduces to

Iðhk0Þ ¼ 1
4 ðjsð1Þj2 þ jsð1Þ�j2Þ ¼ 1

2 jsð1Þj2 ¼ 1
2 jsð4Þj2: ð11Þ

The two type-1 domains therefore contribute equally to these

intensities, and the autocorrelation function calculated using

these intensities will give a map of interatomic vectors

between X-ray scatterers in the surface region of both type-1

domains. Of course, a similar argument holds for the in-plane

SR reflections from the type-2 domains. Fig. 7 depicts sche-

matically the contributions of each of these types of domain to

the observed in-plane reflections.

5. Unit-cell contents from ‘in-plane’ superstructure
spot Patterson function

If a surface reconstructs so that the dimensions of its two-

dimensional unit cell are larger than those of the bulk, non-

zero diffraction intensities can be measured for certain

Acta Cryst. (2007). A63, 239–250 R. Fung et al. � Phase and amplitude recovery 243

research papers

Figure 6
Examples to illustrate the need for four domains. In each case, crosses,
squares and circles represent atoms of different species at different
heights. Domains 1 and 4 are of type 1 and domains 2 and 3 are of type 2.
Domains 1 and 2 are related by a ‘vertical’ mirror plane (in the plane of
the paper), so are domains 3 and 4. Likewise, domains 1 and 3 are related
by a ‘horizontal’ mirror plane and so are domains 2 and 4. These four
domains are different in general and therefore all four are required to
preserve p2mm symmetry. If domains 2 and 3 are identical, in which case
domains 1 and 4 will also be identical, then only two domains are needed.
(a) Atoms in one of the four high-symmetry (atop, hollow, long bridge or
short bridge) sites, unless atoms represented by squares and circles are of
the same species and are at the same height, the four domains are
different. (b) Atoms in general locations.
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momentum transfer vectors with non-integer values of either

or both of the ‘in-plane’ Laue indices h and k [equation (3)]. In

the simplest case in which the two-dimensional lattice vectors

for the surface are �a1 and �a2, where � and � are positive

integers, and a1 and a2 are the two-dimensional lattice vectors

for the bulk, non-zero diffraction intensities can be measured

at

ðh; kÞ ¼ m

�
;

n

�

� �
; ð12Þ

where m and n are integers.

The inverse Fourier transform of the intensities of X-ray

reflections produces a real-space autocorrelation function,

known as a Patterson function, that reveals the magnitudes

and directions of interatomic vectors. For a surface super-

structure commensurate with the bulk structure, the set of

momentum transfer vectors for which either or both in-plane

Laue indices are non-integers are known as fractional order or

superstructure reflections, fqSSg. The Patterson function

PðrÞ ¼ 1

N

X
q2qSS

Iq expð�2�iq � rÞ; ð13Þ

calculated from the intensities of only in-plane superstructure

reflections, is of particular interest in SXRD as it has been

suggested (see e.g. Bohr et al., 1986) that this function may be

able to identify in-plane interatomic vectors between X-ray

scatterers in the surface region. If so, this would put

constraints on, and thus reduce, the number of possible

starting models of the surface layer in a conventional structure

refinement. However, as we demonstrate below, even for

relatively simple systems, such a Patterson map can be

misleading. The positive octant of a three-dimensional

Patterson map calculated from the data of just the super-

structure reflections that arise from type-1 domains is shown in

Fig. 8.

The first point to notice is that there is no strong intensity

out of the plane parallel to the surface that passes through the

origin (let us call it the z ¼ 0 plane). This suggests that all

surface interatomic vectors are coplanar and thus that the

surface structure (i.e. that which differs from the bulk) lies in a

single plane. This implies that all adatoms must be coplanar,

and that any other deviations from the bulk structure must

also be found in this plane. This rules out substrate recon-

structions or relaxations distributed over more than one plane.

Within the z ¼ 0 plane, the only two strong non-origin

peaks are found corresponding to interatomic vectors a1 þ 2a2

and 2a1 þ a2. Other than confirming the ð ffiffiffi
3

p � ffiffiffi
3

p Þ nature of

the surface, this Patterson map does not seem to provide any

new insights into the atomic arrangement of the surface layer.

At first sight, this Patterson map seems to contradict the

expected Sb adatom coverage. A coverage of �Sb � 2
3 would

correspond to six Sb adatoms, or two parallel rows, per ð3 � 3Þ
surface unit cell. The two non-origin strong peaks correspond

to the interatomic vectors within each row, but the interatomic

vectors between the two rows are missing. As we point out

below, the explanation is that, regardless of the actual surface

structure, the z ¼ 0 plane of a partial Patterson map calculated

from just the data of the superstructure reflections cannot

have a positive peak corresponding to any interatomic spacing

equivalent to a two-dimensional bulk lattice vector unless that

spacing also corresponds to a two-dimensional surface lattice

vector.
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Figure 8
Positive octant of the three-dimensional partial Patterson function for the
present data (calculated using only superstructure reflections that arise
from type-1 surface domains) showing interatomic vectors in a volume
occupied by (3 � 3 � 2) bulk unit cells. Two strong non-origin peaks are
observed at ð1; 2; 0Þ and ð2; 1; 0Þ. Surprisingly, this map is consistent with
either one row of Sb adatoms or two rows of Sb adatoms separated
laterally by two-dimensional bulk lattice vectors [as discussed in the text,
in the latter case, interatomic vectors corresponding to bulk lattice
spacings cannot give rise to peaks at the expected locations ð1; 0; 0Þ or
ð0; 1; 0Þ].

Figure 7
Schematic diagram showing how data are symmetrized. Owing to p2mm
symmetry, only data for positive h and k need to be collected. (In practice,
data were collected from all four quadrants to establish uncertainties in
the measurements.) In the example here, four inequivalent superstructure
reflections are measured (denoted by different unfilled geometric shapes:
cross, diamond, circle and square). Intensities of reflections in the other
quadrants can be obtained using symmetry. The four reflections denoted
by the unfilled squares, for instance, have the same intensities. To
calculate the autocorrelation function for, say, a type-1 domain,
reflections denoted by unfilled shapes with thick outline are used. As
can be seen in the schematic, all measured inequivalent superstructure
reflections (i.e. cross, diamond, circle and square) are used.
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The proof of this statement follows from (13) and Friedel’s

law, which implies that Iq ¼ I�q, and we deduce that

Pðx; y; 0Þ ¼ 1

N

X
ðh;kÞ2ðh;kÞSS

Jh;k cosð2�fhx þ kygÞ; ð14Þ

where Jh;k ¼P
l Ih;k;l. For Bragg reflections from a type-1

domain, the Laue indices ðh; kÞ of the superstructure rods take

the form ðm � 1
3 ; n � 1

3Þ, where m and n are integers (see Fig.

3), and hence the cosine term in equation (14) takes the form

cosf2�½ðm � 1
3Þx þ ðn � 1

3Þy�g, which for integer values of the

in-plane fractional coordinates x and y (two-dimensional bulk

lattice vectors) reduces to cos½2�3 ðx þ yÞ� and is positive only if

x þ y is a multiple of three, e.g. ðx; yÞ ¼ ð0; 0Þ; ð1; 2Þ or ð2; 1Þ.
The vectors joining the latter two points to the origin corre-

spond to two-dimensional surface lattice vectors. This suggests

that, of the set of bulk lattice vectors, only the surface lattice

vectors may give rise to positive peaks in such a two-dimen-

sional partial Patterson function independent of the actual

surface structure.

It should be emphasized that these are not general limita-

tions of the Patterson function, an established device in

crystallography, but rather of the kind of partial Patterson

function described here, calculated from the data of only the

surface structure factors associated with SRs. (Those asso-

ciated with the CTRs are not immediately accessible, since a

CTR is formed by the interference between bulk and surface

structure factors.)

Knowing that each ð3 � 3Þ surface unit cell contains six Sb

adatoms (�Sb � 2
3) forming two parallel rows, and that the two

rows must be separated laterally by exactly a two-dimensional

bulk lattice vector (a vector that cannot show up on the partial

Patterson map), we proceed to refine by conventional means

the four most ‘obvious’ trial models. In these models, Sb atoms

are placed at half the height of a bulk unit cell (i.e. 1
2 a3) above

the last Au layer (taken to be unrelaxed), over the hollow,

atop, long bridge or short bridge sites. All the atoms in the

models are assigned the Debye–Waller factor of bulk Au at

RT and only the vertical positions of the Sb adatoms and the

first Au layer are allowed to vary to minimize the reduced �2.

Results are summarized in Table 1. As expected, occupation of

hollow sites is preferred. However, all �2 values are signifi-

cantly higher than would be expected for a correct structural

model. Since none of these ‘obvious’ models seem particularly

promising, we turn to our direct method, which is described

next.

6. Phase and amplitude recovery and diffraction image
generation method

The aim of a direct method in X-ray diffraction is to remove

the need for the initial inspired guess of a trial model. Rather,

the aim is to deduce, directly from the measured data, an

approximate electron density that suggests a structural model

that can be refined rapidly by conventional means. An

approximate representation of the surface electron density

may be found from an inverse Fourier transform of the

structure factors associated with this electron density. The

amplitudes of these structure factors associated with the SRs

are proportional to the square roots of the SR intensities, and

are thus directly accessible to experiment. The complex

surface structure factors associated with the CTRs form an

interference pattern with the structure factors of the deeper

bulk-like atomic layers. What is measurable is the resulting set

of (real) intensities. Any attempt to recover directly the entire

surface electron density would need to solve two problems: (1)

to isolate the phase and amplitude scattering contributions of

the surface structure factors to the CTR intensities, and (2) to

determine the phases associated with the amplitudes of the

SRs.

By oversampling the continuous diffraction patterns from

non-periodic objects with respect to their Nyquist frequencies,

Miao et al. (1999) were able to devise an algorithm that was

able to find the phases associated with the diffraction ampli-

tudes, which are directly accessible from experiment. The

algorithm involves alternately satisfying constraints to the

experimental data in reciprocal space and a support constraint

in real space. Upon convergence, this algorithm yields the

phases associated with the diffraction amplitudes in reciprocal

space, and a ‘diffraction image’ of the object in real space. We

take this approach one step further: although in the cases of

the SRs we find the phases associated with measured

diffraction intensities, as in the method of Miao et al., our

algorithm is able also to isolate both the amplitudes and phases

of the surface structure factors contributing to the CTRs,

hence the name phase and amplitude recovery and diffraction

image generation method 1 (or PARADIGM, for short).
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Table 1
Conventional fitting results for the four high-symmetry models: hollow, atop, long bridge and short bridge.

Columns 2 and 3 list the fractional ðx; yÞ coordinates, relative to a Au atom in the last Au layer, over which the Sb adatoms were held. The Sb adatoms were initially
placed at half the height of a bulk unit cell above the last Au layer, which was taken to be unrelaxed. Changes in z positions (Å) of the Sb atoms and the last Au
layer that minimized the reduced �2 are listed. All atoms in the models were assigned the Debye–Waller factor of bulk Au at RT.

Sb1ð x
a1
; y

a2
Þ Sb2ð x

a1
; y

a2
Þ �zSb1

�zSb2
�zAu �2

Hollow ð1
6 ;

1
2Þ; ð1

2 ;
1
6Þ; ð5

6 ;
5
6Þ ð1

6 ;
1
6Þ; ð1

2 ;
5
6Þ; ð5

6 ;
1
2Þ �0.45 0.31 0.04 3.17

Atop ð0; 2
3Þ; ð1

3 ;
1
3Þ; ð2

3 ; 0Þ ð0; 1
3Þ; ð1

3 ; 0Þ; ð2
3 ;

2
3Þ 0.16 2.80 �0.01 8.25

Long bridge ð0; 5
6Þ; ð1

3 ;
1
2Þ; ð2

3 ;
1
6Þ ð0; 1

2Þ; ð1
3 ;

1
6Þ; ð2

3 ;
5
6Þ �0.09 2.5 �0.01 8.02

Short bridge ð1
6 ;

2
3Þ; ð1

2 ;
1
3Þ; ð5

6 ; 0Þ ð1
6 ;

1
3Þ; ð1

2 ; 0Þ; ð5
6 ;

2
3Þ �0.25 2.6 0.00 8.18

1 Of course, in no way does our use of the term ‘image’ in this context imply a
representation of the contents of any single unit cell. Rather, the term is used
in the sense of Bragg (1939), in his description of the recovery of the average
of the contents of a large number of unit cells from a diffraction pattern with
the device he termed an ‘X-ray microscope’.
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A schematic diagram of the algorithm is illustrated in Fig. 9.

This describes a set of repeated cycles between real-space

operations on the left and reciprocal-space operations on the

right. The cycles may be initiated at the first iteration (n ¼ 0)

with a flat distribution fuð0Þ
j g of the surface electron distribu-

tion (where the subscript j refers to a real space voxel). The

coefficients fSðnÞ
q g ¼ FTfuðnÞ

j g of its Fourier transform at the nth

iteration may be regarded as estimates fSðnÞ
q g of the surface

structure factors corresponding to scattering wavevectors q at

the same iteration. Adding these to the corresponding struc-

ture factors fBqg of the bulk, and taking the arguments of the

resulting complex numbers give the estimated phases f�ðnÞ
q g of

the corresponding total structure factors fFðnÞ
q g, whose ampli-

tudes are constrained to be cðnÞjFobs
q j, where jFobs

q j is the

corresponding measured structure factor, and

cðnÞ ¼
P

q jFðnÞ
q jjFobs

q jP
q jFobs

q j2 ð15Þ

is a scaling factor found by the least-squares minimization of

the difference between the observed and current estimate of

calculated structure factors.

Revised estimates fTðnÞ
q g of the surface structure factors may

be found by subtracting from these estimates of the total

structure factors the bulk structure factors (Marks, 1999;

Saldin, Harder, Vogler et al., 2001), i.e.

TðnÞ
q ¼ cðnÞjFobs

q j exp fi�ðnÞ
q g � Bq: ð16Þ

An inverse Fourier transform of these quantities would give a

new estimate

ftðnÞj g ¼ FT�1fTðnÞ
q g ð17Þ

of the surface electron distribution that is constrained by the

experimental data (bottom right of Fig. 9).

The next step is to apply a constraint in real space known as

an object domain operation (ODO). Following Fienup (1978),

we employ a constraint of compact support, in our case in the

direction normal to the surface (the direction in which the

data are oversampled). A solution to the determination of the

extent of the support region from the experimental data alone

for a general non-periodic object has been suggested by

Marchesini et al. (2003). As a corollary, we estimated the

height of the surface slab defining our region of compact

support by taking the one-dimensional Fourier transform of

the intensity of a SR of low values of in-plane Laue indices, h

and k. This will give an estimate of the extent of the auto-

correlation function of the surface electron density in the

direction of a3, which will be about twice the height of the

surface slab. Since the diffraction rods can be sampled at quite

fine intervals along the rods, a Fourier transform of such data

used to calculate ftðnÞj g will generally (i.e. if the phases are not

correct) give non-zero values over a range of heights much

larger than the physical height of the surface electron density.

A real-space constraint may be imposed by defining a new

estimate fuðnþ1Þ
j g of the electron density at the next iteration by

(Fienup, 1978)

u
ðnþ1Þ
j ¼ t

ðnÞ
j ; j 62 �

0; j 2 �,

�
ð18Þ

where � forms the set of grid points that lie in a region not

expected to contain electron density. The next iteration of the

algorithm consists of repeating the above steps but with

fuðnþ1Þ
j g substituted for fuðnÞ

j g, and the iterations may be

continued until successive estimates of the surface electron

distribution fug do not differ appreciably. Since the process we

have described forms an iteration cycle that is continued to

self-consistency, it is relatively unimportant whether the

starting point is a flat distribution of electron densities fuð0Þ
j g in

real space or a random set of phases f�ð0Þ
q g in reciprocal space

[equation (16)]. Independently of the starting point, the

algorithm usually converged within a few tens of iterations to

give a clean image showing concentrations of electron densi-

ties, which may be interpreted as a set of initial atom positions

of a starting surface model for a subsequent conventional

refinement.

The basic scheme above applies strictly only to single-

domain systems. In equation (16) for instance, Bq can only be

subtracted from the scaled Fq if they are both single-domain

structure factors. When multiple domains are present, the

measured quantity jFobsj2 is an average over contributions

from the domains.

For the system under study, we expect the domain sizes to

be larger than the coherence length of the X-ray probe, and

hence that the measured intensities are incoherent averages of

contributions from all the domains [equation (8)]. The inten-

sity contribution from one domain (say domain 1) at iteration

n is therefore (Saldin et al., 2002)
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Figure 9
Flowchart of the PARADIGM for a single-domain surface. The indicated
operations are performed on all elements of the sets of quantities
enclosed by the braces. The individual elements of each set are
characterized by the subscripts. The notation ODO represents the object
domain operations described in the text. Other symbols are also defined
in the text.
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jf ð1;nÞq j2 ¼ cðnÞDjFobs
q j2 �PD

d¼2

jf ðd;nÞq j2; ð19Þ

where jFobs
q j2 is the measured intensity for scattering vector q,

f
ðd;nÞ
q ¼ b

ðdÞ
q þ s

ðd;nÞ
q is the estimate at iteration n of the total

structure factor from domain d, consisting of a sum over the

corresponding bulk b
ðdÞ
q and surface s

ðd;nÞ
q structure factors, D is

the number of domains and the scaling factor cðnÞ is defined by

(15), with

jFðnÞ
q j ¼ 1

D

XD

d¼1

jf ðd;nÞq j2
 !1=2

: ð20Þ

Thus, equation (16) is replaced by

tð1;nÞq ¼ jf ð1;nÞq j exp fi�ð1;nÞg � bð1Þ
q : ð21Þ

Since, for symmetry-related domains, f
ðd;nÞ
q ¼ f

ð1;nÞ
q0 , where q

and q0 are related by symmetry, the current estimate of the set

of complex amplitudes ff ð1;nÞq g will enable the calculation of the

set ff ðd;nÞq g for each of the other domains d. Therefore, the

current estimates of the structure-factor amplitudes ff ð1;nÞq g
from domain 1 may be made consistent with the experimental

data fjFobs
q jg via (19). The Fourier transform of the set of

amplitudes ftð1;nÞq g gives the current estimate of the surface

electron distribution in a unit cell of domain 1. By this

procedure (the flow chart in Fig. 10), it is possible to recover

the electron distribution of a unit cell of any single domain

even when multiple domains contribute to the measured

diffraction intensities. Three orthogonal projections of

isosurfaces of the electron density recovered in this case by the

PARADIGM are shown in Fig. 11, together with dots that

indicate the final positions of the adatoms deduced from a

conventional refinement procedure (as described in the next

section). The electron-density isosurfaces in the (XY)

projection in a direction perpendicular to the surface suggest

that adatoms are adsorbed close to all hollow sites of the

substrate. The isosurfaces also suggest that the adatoms form

three distinguishable and repeating rows along diagonals

parallel to a line connecting the top left to the bottom right of

this projection. While the isosurfaces on the long diagonal in

this panel seem to be closely tied to the exact hollow sites in

their corresponding unit cells, the other two diagonals appear

to consist of adatom rows slightly displaced toward each other.

Since the Sb coverage is consistent with two diagonal rows of

Sb out of every three, it might be supposed that the slightly

displaced rows consist of Sb adatoms, and that the undisplaced

row is one of Au adatoms.

Since, as we have already seen, a partial Patterson function

of the kind in Fig. 8 is not expected to show up adatom–

adatom vectors equal to bulk lattice vectors that are not also

unit vectors of the superstructure (see also Lyman et al., 2006),

that partial Patterson function is entirely consistent with

the above interpretation of the isosurface map from the

PARADIGM.

Note also that, unlike the Patterson function, which is

calculated from data of just SRs, which arise purely from

surface scattering, and can thus reveal only interatomic

vectors between adatoms, the PARADIGM operates on the

data from both SRs and CTRs. Since the intensities of the

latter rods are formed by the interference between bulk and

surface scattering, the surface electron-density map from the

PARADIGM has a spatial origin defined with respect to the

substrate. One consequence of this difference is that, although

the Patterson map of Fig. 8 is consistent with many different

overlayer adsorption sites, the electron-density map of Fig. 11

clearly indicates hollow-site adsorption.

Furthermore, the PARADIGM also suggests approximate

heights of the adatom rows above the outermost layer of the

substrate. Indeed, the side (XZ and YZ) projections suggest

that the adatoms lie approximately half a thickness of a bulk

unit cell above the outermost substrate layer, in approximately

the same relation of successive atomic planes in the bulk.

Sample CTRs and SRs simultaneously calculated from

assumed bulk structure factors and from the surface electron

density recovered by the PARADIGM are indicated by the

open circles in Figs. 1 and 2, and are seen to be a reasonable fit

to the experimental data, except for regions with low values of

the Laue index l, affected by total external reflection not

modeled by the PARADIGM, and/or other low-intensity

portions of the rods.

7. Conventional structure refinement

The aim of the PARADIGM is to reveal an approximate

electron density of the surface region. As with bulk X-ray

crystallography (see e.g. Drenth, 1994), accurate values of

structural parameters are still best found by the conventional

refinement of an atomistic model based on the recovered

electron density. We did this using the ROD program devel-

oped by Vlieg (2000). We took as a starting point a model of

2=3 ML of Sb adatoms and 1=3 ML of Au adatoms at half the

height of a bulk unit cell above the outermost Au layer, and
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Figure 10
Same as Fig. 9 except for multiple incoherently scattering domains. The
recovered electron distribution f	ð1;nÞg is that of domain 1. The other
symbols are defined in the text.
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directly over the hollow sites. The Sb coverage of 2/3 implied

by our results is both natural for a (
p

3 �p
3) reconstruction

and consistent with the value of 0.8 � 0.15 ML we measured

for the Sb/Au(110)–(
p

3 �p
3)R54.7� surfaces we prepared in

the XPS chamber at the University of Wisconsin–Milwaukee.

The positions of the adatoms were varied in all directions,

subject to symmetry restrictions. The best fit model yielded a

reduced �2 value of 2.35, much lower than that of the previous

models. Details of the fit are summarized in Table 2.

An even lower reduced �2 of 1.74 is obtained if the adatoms

and the Au atoms in the outermost bulk layer are allowed to

have Debye–Waller factors different from the bulk Au atoms

at RT. The elevated values of the Debye–Waller factors for the

two Sb atoms in this model (Table 3) is somewhat troubling.

However, allowing for partial occupancies of surface Au and

Sb atoms reduces these Debye–Waller factors to lie within

reasonable range, but with high error bars. The final reduced

�2 value of 1.51 indicates that our final model (Table 4) is in

very good agreement with the data, as is also evident from the

sample calculated CTRs and SRs represented by solid lines in

Figs. 1 and 2, respectively. The better agreement with the

measured data for low values of l than the output of the

PARADIGM is due to a correct modeling of total external

reflection by the ROD program.

The relationship between the isosurfaces from the PARA-

DIGM and the adatom positions deduced from this conven-

tional refinement is also indicated in the various panels of Fig.

11. The red dots in these panels indicate the projections of the

Au adatom positions, and the blue ones those of the Sb atoms.

The isosurfaces of the XY projection of the top panel are seen

to indicate lateral positions of the adatoms remarkably accu-

rately, including a clear indication of a lateral pairing of

neighboring Sb rows.

The slight buckling of alternate Sb rows suggested by the

conventional structure refinement was not apparent from the

electron-density isosurfaces from the PARADIGM, probably

due to the reduced resolution of the data in the direction

perpendicular to the surface (noted in x3).

8. Discussion

There have been several previous proposals for a direct

method for SXRD. Rius and co-workers proposed a method
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Table 2
Conventional fitting results for the model suggested by the PARADIGM.

Surface atoms were initially placed at half the height of a bulk unit cell above
the last Au layer, directly over the hollow sites. Changes in positions (Å) of the
surface atoms and relaxation of the last Au layer that minimized the reduced
�2 are listed. All atoms in the model were assigned the Debye–Waller factor of
bulk Au at RT. The reduced �2 of the model (with restricted free parameters)
is 2.35.

�x �y �z

Sb1 �0.07 �0.17 �0.37
Sb2 0.06 0.00 0.50
Au 0.01 0.08 �0.05
Au layer N/A N/A 0.12

Table 3
Conventional fitting results for the model suggested by the PARADIGM.

Parameters are the same as in the caption to Table 2, except that the Debye–
Waller factors (Å2) for the surface atoms and the Au atoms in the last layer are
also allowed to vary. The reduced �2 for this model is 1.74.

�x �y �z B

Sb1 �0.16 � 0.01 �0.19 � 0.01 �0.29 � 0.02 4.2 � 0.2
Sb2 0.05 � 0.01 �0.01 � 0.01 0.61 � 0.02 10 � 1
Au �0.03 � 0.01 0.03 � 0.01 �0.05 � 0.01 1.3 � 0.1
Au layer N/A N/A 0.11 � 0.01 1.1 � 0.1

Figure 11
Three orthogonal projections of isosurfaces of the electron density of the
surface unit cell of Sb/Au(110)–ð ffiffiffi

3
p � ffiffiffi

3
p ÞR54.7�, as recovered by the

PARADIGM. The x, y and z axes are measured in units of a1 ¼ 2:88,
a2 ¼ 4:07 and a3 ¼ 2:88 Å, respectively, the defining vectors of a bulk
unit cell. The accuracy of this electron-density map may be judged by
comparisons with the projected positions of Au adatoms (red dots) and
Sb adatoms (blue dots) as found by a final conventional structure
refinement, starting from the atom locations suggested by the
PARADIGM.
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(Rius et al., 1996) that considers only the intensities of the SRs.

They neglect the data in the CTRs where the surface contri-

butions are inherently combined with contributions from the

bulk. They noted that, even if the SR amplitudes could be

phased, their inverse Fourier transform would generate not

the desired full surface electron density but rather the differ-

ence electron density, that is the difference between the true

surface electron density and the average surface electron

density (from the value of the true surface electron density

averaged over each bulk unit cell). This difference electron

density can be positive or negative. Thus, traditional direct

methods stemming from Sayre’s equations (Sayre, 1952) that

rely on the similarity of an electron-density distribution

(regarded as a sum of atomic contributions) to its square are

no longer applicable. However, Rius et al. pointed out that a

difference electron-density distribution may be regarded as

similar to its cube. Unlike Sayre’s equations, which relate a

structure factor to sums of products of two other structure

factors, this leads to equations that relate a structure factor to

sums of products of three other structure factors. Never-

theless, these authors were able to show that even these more

complicated equations may be solved numerically to phase at

least the in-plane parts of the SRs to yield the projected

difference electron density of the surface. In favorable cases

(where the superstructure has few interatomic vectors in

common with those of the underlying bulk and for flat

superstructures parallel to the surface), this has enabled the

solution of quite complex superstructures (Torrelles et al.,

1998).

A different approach has been proposed by Yacoby and co-

workers (Yacoby et al., 2000). There are two variants of their

method, termed COBRA (or coherent Bragg rod analysis).

One requires the evaporation of a thin gold film onto a sample

in order to create an extra interference condition to determine

the phase variation along a CTR. The other relies on the

relatively slower variation of the phase of a surface structure

factor than that of the underlying substrate to give rise to pairs

of simultaneous equations that may be solved for the complex

structure factors of the unknown surface region. Since both

variants of this method require interference of the surface

scattering amplitudes with those of the known substrate, they

can operate only on the CTR data. Consequently, only those

surface structure factors that contribute to the CTRs may be

found, and hence this method may only strictly determine the

average surface structure. We note, however, that those

workers claim to be able (in favorable cases) to unravel the

unfolded surface structure using additional considerations

such as the bulk structure of an epitaxic film (Sowwan et al.,

2002).

An ideal direct method for surface crystallography would

use the information in both CTRs and SRs and would be able

to recover the full three-dimensional structure of a surface

unit cell. Such a scheme has been proposed by Marks (1999)

that ‘exploits the existence of a support constraint normal to

the surface, and couples the concepts of projections, operators,

and sets used in the image reconstruction literature with

statistical operators used in direct methods’. It also assumes

that ‘the scattering comes from atoms’, and has helped

determine the structure of NiO(111)–p(2 � 2) (Erdman et al.,

2000) and the c(8 � 2) reconstructions of InSb–, InAs–, and

GaAs–(001) surfaces (Kumpf et al., 2001).

The PARADIGM algorithm described in this paper like-

wise recovers the three-dimensional electron density of a

complete surface unit cell from the data of both ‘in-plane’ and

‘out-of-plane’ CTRs and SRs by finding the complete surface

structure factors (amplitude and phase) contributing to both.

Since the aim is to recover the electron density rather than

atomic positions, it does not impose an atomicity constraint.

Furthermore, in the case of a multidomain surface structure,

where the domains are related by symmetry operators of the

underlying substrate, it is capable of determining the full

surface electron density of a single domain from the diffrac-

tion data, as we have demonstrated here. After extensive

testing on simulated SXRD data (Saldin, Harder, Shneerson

& Moritz, 2001; Saldin, Harder, Vogler et al., 2001; Saldin et al.,

2002), the method has now been successfully applied to at

least three sets of measured experimental data (Lyman et al.,

2005, 2006, and the present paper) leading to the solution of

unknown surface phases of Sb/Au(110) in the latter two cases.

9. Conclusions

We have described a scheme, the phase and amplitude

recovery and diffraction image generation method (PARA-

DIGM) for generating directly an image of the electron

density of a surface unit cell from measured surface X-ray

diffraction (SXRD) data. We have described an application of

this method to determine the structure of the Sb/Au(110)–

ð ffiffiffi
3

p � ffiffiffi
3

p ÞR54.7� surface. This system provides an instructive

illustration of a case where a partial Patterson function

(calculated in the usual way from the Fourier transform of the

in-plane SRs) is not very helpful in suggesting a useful starting

structure for conventional refinement. The ð ffiffiffi
3

p � ffiffiffi
3

p Þ
symmetry of the system demands that any real-space features
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Table 4
Conventional fitting results for the model suggested by the PARADIGM.

The parameters are the same as in the caption to Table 2, except that the Debye–Waller factors (Å2) for the surface atoms and the Au atoms in the outermost layer,
as well as the occupancies of the surface atoms are allowed to vary. The reduced �2 for this model is 1.51.

�x �y �z B Occ.

Sb1 �0.09 � 0.01 �0.20 � 0.01 �0.23 � 0.02 1.1 � 0.6 0.69 � 0.05
Sb2 0.10 � 0.01 0.03 � 0.01 0.47 � 0.01 0.67 � 0.51 0.61 � 0.02
Au 0.06 � 0.01 0.04 � 0.01 �0.12 � 0.01 1.4 � 0.1 0.96 � 0.01
Au layer N/A N/A 0.10 � 0.01 1.0 � 0.1 N/A

electronic reprint



of the surface unit cell (e.g. adatoms) line up to form rows

parallel to one of the two diagonals of the truncated bulk

lattice of Au(110). The Patterson function suggests only that

there may be one, two or three such rows separated laterally

by two-dimensional unit vectors of this truncated bulk lattice.

Much more detailed information of the entire three-

dimensional structure of the surface unit cell is revealed by

our direct method. Although the known Sb coverage of about
2
3 may suggest an Sb adatom structure of two parallel diagonal

rows of Sb atoms in each ð3 � 3Þ surface unit cell, the direct

method yields a very clean electron-density map of three

parallel diagonal rows of atoms per ð3 � 3Þ surface unit cell,

with the adatoms located near the hollow sites of the under-

lying bulk lattice. Given the coverage of Sb, one of the three

rows of atoms was interpreted to consist of Au adatoms, the

other two Sb ones. A conventional structure refinement of this

model did indeed give by far the best fit with the experimental

data.

Following on the heels of our recent determinations from

experimental data of the structures of clean Au(110)–(2 � 1)

(Lyman et al., 2005), and of Sb/Au(110)–c(2 � 2) (Lyman et

al., 2006) by the same method, the latest success of our scheme

is an encouraging indication of its potential as a general,

routine, reliable and rapid starting point for the subsequent

refinement of surface structures by conventional model-based

refinement methods (e.g. Vlieg, 2000).
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