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We point out the limitations of linear computer reconstruction algorithms employed previously in
holographic crystallography. We show that many of the undesirable artifacts on prior holographic
reconstruction of atom positions from point-source diffraction patterns may be traced directly to the
nonlinear object-wave terms neglected in traditional holography. This problem is particularly severe in
the so-called forward-scattering geometry, represented by, e.g., a subsurface B-atom emitter in the
Si(111)-V3X V'3 B surface. We show that, even in this case, unlike the prior linear schemes, the non-
linear algorithm “atomic-position recovery by iterative optimization of reconstructed intensities” is cap-
able of recovering a very accurate, artifact-free and twin-image-free, three-dimensional reconstruction of
the positions of nearby scattering atoms even for a single diffraction pattern.

I. INTRODUCTION

Direct methods in crystallography! bring advantages
of both elegance and speed to the problem of recovering
relative atom positions from diffraction data. The para-
digm of using ideas® derived from holography® to solve
crystallographic problems in photoelectron diffraction
(PD) (Ref. 4) and low-energy electron diffraction (LEED)
(Ref. 5) have been pursued vigorously in recent years.®
The methodology is the use of a computer algorithm to
reconstruct, directly from a diffraction pattern, a three-
dimensional real-space intensity distribution mapping the
relative positions of atoms in a sample. Although the
early work was very promising, the reconstructed intensi-
ties were sometimes marred by holographic twin images
and unsightly artifacts away from true atom positions,’
which cast some doubt on the use of such methods to
solve completely unknown crystallographic structures.

An attempt has been made to overcome these problems
by increasing the pool of available experimental data, for
instance, by simultaneously using information from a set
of diffraction patterns due to radiation of different wave-
lengths from the same sample.® A generalization of the
reconstruction algorithm for such combined datasets has
been shown to be capable of generating real-space intensi-
ties much less disfigured by artifacts and twin images.
However, the collection of a set of diffraction patterns
from radiation of several different wavelengths is quite an
onerous task, and may not even be possible in, e.g.,
Auger-electron diffraction, where the wavelengths are
determined by differences between atomic energy levels,
and are not therefore variable at will. In holographic
LEED,>° methods have recently been suggested'®!!
which use data from not only different wavelengths, but
also different directions of incidence of the electron beam
on a sample, a procedure which has some analogies with
tomography, and which may increase the required da-
taset by a further order of magnitude for an unknown
structure.
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In this paper we take the different approach of asking
whether a more sophisticated algorithm might enable the
reconstruction of a three-dimensional map of the posi-
tions of atomic scatterers relative to an emitter, free from
artifacts and twin images, even from the data of a single
diffraction pattern. That is, we put the onus more on the
theorist than on the experimentalist to recover a higher-
quality holographic reconstruction from a limited da-
taset.

II. THE AIM
OF HOLOGRAPHIC CRYSTALLOGRAPHY

The most general definition of a hologram? is an inten-
sity distribution H (k) measured over some domain
spanned by a coordinate k, and formed by the interfer-
ence between some known reference wavefront R (k) and
some unknown object wave O (k). Thus

H(k)=|R (k)]2+R(k)O*(k)+R*(k)O (k)+ |0 (k)| .
(1)

The science of holography was born when Gabor®
discovered a technique for recovering the unknown ob-
ject wave O(k) from a measured hologram H (k) and
knowledge of the form of the reference wave R (k).

In holographic crystallography the hologram is some
measured diffraction pattern, and the aim is to go beyond
the recovery of an object wavefield O, usually a wave
scattered by an atom, to reconstruct the position of the
source of the scattered wave, namely the scattering atom,
relative to the source of the reference wave R, usually
another atom in the sample. If the reference-wave
sources are a set of identical atoms which emit Auger
electrons or photoelectrons, a diffuse diffraction pattern
may be formed which is characteristic of the emitting
atom and the local cluster of atomic scatterers in its vi-
cinity.® For emitters consisting of atomic adsorbates on
a surface, the cluster of scatterers will be the local sub-
strate atoms closest to each adsorbate. In the cases of
Auger-electron and photoelectron diffraction, since each
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emission process is essentially independent of all the oth-
ers, a diffuse diffraction pattern is formed even in the
presence of long-range spatial order among the emitters.
In the case of the “diffuse low-energy electron-

diffraction” (diffuse LEED or DLEED) pattern,'?>——

formed when a beam of low-energy electrons are directed
from an external source onto a crystal surface containing
adsorbates, a similar diffuse diffraction pattern is formed
in the presence of lattice-gas disorder of the adsorbates
with respect the substrate.

In all these cases, the far-field variation of the object
wave O (k) may be written

0(k)=S3S(r,,k) , 2)

where S(r;,k) represents the wave field emerging from a
scattering atom at position r; after multiple scattering
from all its neighbors, and k is the far-field wave vector of
an electron giving rise to the intensity H (k). The distri-
bution of H (k) may be sampled for different values of
both the direction and magnitude of the wave vector k.
In mathematical terms, the aim of holographic crystal-
lography is to devise some kind of computer algorithm
which would recover, as accurately as possible, the atom-
ic positions r; from the measured data H (k).

1L LINEAR RECONSTRUCTION SCHEMES —e.g.,
THE BARTON AND SWIFT ALGORITHMS

An approach which has been tried is to perform an in-
tegral of the form

A= [H&K (r,k)dk, 3)
which can be regarded as a sum of four terms:

4,(0)= [ [RWK (r,k)dk , @)

4,(0= [ R(K)O*(K)K (r,k)dk , (5)

= [ R*(K)0(K)K (r,k)dk , (©6)

4,(0)= [ 10(&)K (1,k)dk, )

from the four terms in (1). If a kernel K (r,k) is chosen
such that

J RIS (r, KK (r,k)dk ~8(r—r;) (8)

the function (5) would pick out the positions of the
scatterers, since then

Az(r)zzs(r_ri) . (9)

The relation (8) essentially represents an orthogonality
condition which would be expected to be exact only if the
integral is carried out over an infinite domain. In prac-
tice, of course, measured data of H (k) is finite, and the
best that can be hoped for is that A,(r) is strongly
peaked around the positions r=r;, with a peak width in-
versely proportional to the range of the variable k.

Various approximations to K (r,k) have been suggest-
ed. For example, Barton’s®® most general kernel takes
the form
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K(r,k)=¢!lkr—kn) (10)

while (for an s-wave emitter) a more accurate scattered-
wave included Fourier-transform (SWIFT) kernel® may
be written

K (r,k)=re!'® =0 Q) (k)| /f S (k, 1) (1

where f$y(k,r) is the appropriate spherical-wave
scattering fac’corI for an atom at position r relative to the
emitter. This kernel differs slightly from that of Ref. 13 in
the existence in the numerator of the modulus of the
scattering factor. This extra factor is inserted to compen-
sate for the possibility that the denominator may vanish
at certain values of its argument.

If the peaks in A,(r) at the atom positions r; dominate
over the other more diffuse contributions to A4(r), the
dominant features of the function

I(r)=|A4(0)|? (12)

would be expected to reveal the distribution of atoms
around the emitter. The problem is that there is no way
a priori to be sure that the terms 4, 43, and 4, will not
be large enough to interfere with this idealized picture.
The best known example of an undesirable effect from the
other terms is, of course, the formation of “twin images”
in classical holography'* from the contribution of the 4,
term. Application of Barton’s algorithm* to a monoener-
getic photoelectron diffraction pattern results in twin im-
ages equal in magnitude to the true images of the atoms.
Also, in the so-called “forward-scattering” geometry, '’
where scattering atoms are found between the reference-
wave source and the detector, the strong forward-
scattering nature of electron-scattering factors for elec-
trons of energies greater than a few hundred eV gives rise
to “forward-scattering peaks”!® on the diffraction pat-
tern in the regions of which the object waves O (k) may
be comparable with, or larger than, the reference wave
R (k). In such cases the contributions of the 4, term
above may even be dominant. These contributions give
rise to the so-called “low-radius artifacts,” discussed ear-
lier in the literature.”!

IV. APPLICATIONS OF THE LINEAR ALGORITHM

We illustrate the effects of these undesirable contribu-
tions by attempting to reconstruct the known positions of
a small cluster of Si atoms surrounding a B photoemitter
on a simple model of the Si(111)-V3X V'3 B surface, from
its calculated photoelectron diffraction pattern. The
unusual subsurface adsorption site of the B atoms and the
accompanying V3 X V'3 surface reconstruction of Si(111)
can be realized experimentally by allowing B atoms to
diffuse from the bulk to the surface from heavily B-doped
Si samples. In our model, a B atom is assumed to be at a
subsurface substitutional site in the second layer from the
surface, directly beneath a Si atom, as shown in Fig. 1.
There are five nearest-neighbor Si atoms around the B.
In a photoelectron diffraction experiment with the B
atom acting as an electron emitter, four of these atoms,
termed Si(1)-Si(4), contribute to the diffraction pattern
primarily as forward scatterers. The B-Si(1), B-Si(2), and
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FIG. 1. Diagram of the cluster of near-neighbor atoms to 2 B
atom on the Si(111)-V'3X V'3 B surface. In this unusual adsorp-
tion site, the boron atom in the S’ site is in the subsurface sub-
stitutional position in the second layer, directly underneath the
Si(4) adatom.

- Si4)

Si(2)

B-8i(3) bond lengths are taken to be 2.15 A, and the B-
Si(4) length, 2.32 A. The angle between any of the former
set of bonds [e.g., B-Si(1)] and the B-Si(4) is taken to be
63°. The cluster has threefold rotation symmetry about
the (111) surface normal. Also included in the cluster
were the four near-neighbor atoms, shown in Fig. 1,
below the B emitter. The adsorption site and near-
neighbor bond lengths in our model were identical to
those assumed by Tong et al. in their attempt to recon-
struct the same geometry from a single calculated photo-
electron diffraction pattern by their phase-shift correcting
algorithm, '® and from diffraction patterns of a range of
several different electron energies by their small-window
energy-extension process (SWEEP),!® somewhat analo-
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gous to the multiple-wavelength Barton (10) or SWIFT
(11) algorithms.

The photoelectron diffraction pattern resulting from a
500-eV electron emitted by the B atom and its subsequent
full multiple scattering from all the atoms of the cluster
(including the B emitter) was calculated by the
concentric-shell photoelectron diffraction program of Sal-
din, Harp, and Chen.Z® We have assumed an s-wave em-
itter for simplicity. The result is shown in Fig. 2. The
center of the pattern marks the projection of the (111)
surface normal (the z direction indicated in Fig. 1), and
the edge of the pattern corresponds to a 70° polar angle.
The central peak on the diffraction pattern is due to the
large object wave forward scattered by atom Si(4) of Fig.
1, while the similar dominant intensity features at the
periphery of the pattern mark the forward-scattering
features from atoms Si(1) to Si(3). Interference and
multiple-scattering effects contribute to the weaker
diffraction fringes also seen in the figure.

The difficulty of reconstructing from this diffraction
pattern the positions of atoms Si(1) through Si(4) relative
to the B emitter by means of an algorithm of the form (3)
is illustrated in Figs. 3 and 4. The top panel in Fig. 3
shows the reconstructed radial image functions (RIF)
(Ref. 21) in the surface-normal direction, corresponding
to a polar angle of 8=0°, connecting the B-atom source
and the Si(4) atom. The lower panel in the same figure
depicts the corresponding RIF along a line tilted away
from the surface normal by 8=63° connecting the B
source to, e.g., the Si(1) atom. Both RIF’s were calculat-
ed by an algorithm of the form (3) using the Barton ker-
nel (10). The vertical dashed line in the upper panel cor-
responds to the position of the Si(4) atom relative to the
emitter (at the origin), while the similar dashed line in the
lower panel marks the position of the Si(1) atom in our
model. Note that, in both cases, a peak associated with
the atom scatterer is found at a position displaced further
away from the emitter than the true position of the

FIG. 2. Multiple-scattering calculation of
the photoelectron diffraction from the s-wave
B emitter and Si-atom scatterers of the atomic

cluster of Fig. 1. The kinetic energy of the
photoemitted electrons was taken to be 500 eV.
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FIG. 3. Radial image functions (RIF’s) reconstructed by an
algorithm of form (3) and Barton’s kernel (10) from the
diffraction pattern of Fig. 2. The upper panel shows the recon-
structed intensity along a line passing through the emitter and
normal to the surface (with polar angle 8=0), and the lower
panel depicts the corresponding intensity along a straight line
joining the emitter and the position of atom Si(1) of Fig. 1.

scatterer, consistent with the known properties of such an
algorithm.*22 This peak shift has been shown'*?? to be
a consequence of the anisotropy of the atomic-scattering
factor for an electron of such an energy. Also noticeable
is the mirror symmetry of the RIF’s about the origin, a
feature consistent with the “twin images” of classical
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FIG. 4. Same as Fig. 3 except that the reconstructions were
performed with the SWIFT kernel (11).

holography.** A third undesirable feature is the pres-
ence on these RIF’s of strong intensity peaks around 1 A
from the source, which have no relation to any atom in
our model. These are the so-called low-radius artifacts,
discussed earlier in the literature.” They are a direct
consequence of the existence of the strong forward-
scattering peaks on the diffraction pattern of Fig. 2.

The results of repeating the calculation with the
SWIFT kernel (11) replacing the Barton kernel (10) in the
algorithm (3) are shown in Fig. 4. Here peaks are found
almost exactly at the positions of the Si(4) and Si(1)
atoms, on the RIF’s in the directions of those atoms. It
should be noted that the factor r in the numerator of the
kernel (11) does appear to have removed the unsightly
“low-radius artifacts,” unlike an algorithm!® which
corrects only for the phase of the scattering factor. How-
ever, the presence of the factor r also increases the inten-
sities at large radii on the RIF’s to the extent that it is
unclear a priori which of the peaks on the positive side of
the 86=0 RIF corresponds to the atom Si(4). Also trou-
blesome is the fact that, although true mirror symmetry
about the source atom has been removed, substantial in-
tensities remain on the “twin” sides of the RIF’s (corre-
sponding to negative values of the abscissae on Fig. 4), a
fact not conducive to the easy determination of a com-
pletely unknown structure from such a reconstruction.

It is the search for a more unambiguous reconstruction
of the true atom positions from even a single diffraction
pattern like that of Fig. 2 which leads us to the algo-
rithm which we have named “atomic-position recovery
by iterative optimization of reconstructed intensities,” or
APRIORI for short.?> We describe this algorithm in Sec.
V.

V. APRIORI—A NONLINEAR
RECONSTRUCTION ALGORITHM

~_The results above show that an orthogonalization con-

dition of the form (8) applied to the contribution 4,(5)
to (3) cannot always be relied upon to ensure that local
intensity maxima corresponding to true atom positions at
r=r; dominate contributions from the other terms 4,,
Az, and A,. The term A, tends to produce a high-
intensity region close to the emitter atom, and 45 to the
twin image.?? The term A, arises from the squared
object-wave term [the fourth term (1)] contributing to the
intensity of a hologram. When the object-wave intensity
is always much smaller than that of the reference wave,
i.e., when

lo(k)| <R (k)| , (13)

A, is negligible compared with the other terms. In the
case of the diffraction pattern of Fig. 2, however, this
condition does not hold in the regions of the “forward-
scattering peaks,” as discussed in Sec. IV. Similar con-
clusions have been reached by Barton and Terminello.?*
It has been shown’ that it is the dominant intensities of
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the forward-scattering peaks which give rise to the low-
radius artifacts on RIF’s like those in Figs. 3 and 4.

An algorithm of the form (3) works best when the con-
tribution to the reconstructed intensity from the term A,
(5) is enhanced, while those from the terms 4, 45, and
A, are reduced to smoothly varying background contri-
butions. The results of Sec. IV show that, in practice,
contributions to the hologram intensity from the first,
third, and fourth terms in (1) can act to spoil an image of
atom positions reconstructed by an algorithm of the form
(3), even if a kernel could be found which satisfies an ap-
proximate orthogonality condition of the form (8). How-
ever, it should be noted that structural information is
present even in the third and fourth terms of (1). Indeed,
in a diffraction pattern like that of Fig. 2, the regions of
highest intensity, and hence the best signal-to-noise ratio
on experimental data, are in the forward-scattering
peaks, which are dominated by the nonlinear object-wave
terms. The philosophy of the APRIORI algorithm,
which we describe below, is to use the information in all
four of the terms in (1) contributing to the hologram in-
tensity to recover relative atom positions. ‘

The logic is the following: our aim is to recover the
positions of nearby scattering atoms relative to the pho-
toelectron sources, from the intensity distributions of a
measured diffraction pattern. We are free to use any gen-
eral physical information that we possess, such as the na-
ture of the electron wave initially photoemitted from an
atom (from calculated matrix elements of the atomic
transition), and any knowledge of the chemical species
{(obtainable from a photoemission or Auger spectrum of
the sample) and the core potentials of the scattering
atoms. Fortunately, in the current practice of electron
spectroscopies, such as low energy electron diffraction
(LEED),? x-ray-absorption spectroscopy (XAS),%® and
photoelectron diffraction (PD), !’ these specifically atomic
properties are decoupled from the crystallographic data of
relative atom positions. We begin by defining a distribu-
tion py(r;) (Ref. 27) of scattering atoms of chemical
species X on a fine grid of positions r; relative to the pho-
toemitter. The theoretical expression for the far-field in-
tensity, I, of a photoelectron diffraction pattern may be
written in terms of this distribution, the reference wave
R(k), and the object wave Oy(k,r;), scattered by an
atom of chemical species X at a position r; relative to the
emitter.?? The resulting expression is

Ith(k)='R (k)'z','sz(r,‘)MX(kari) s (14)

X,i
where

My (k,r;)=[R*(k)Ox(k,r;)+c.c.]

+05(k,1,)Sp(r,)02(k,1;) (15)
Zj

with c.c. representing complex conjugation, Z another
dummy index for the chemical species of a scatterer
atom, and r; another point on the real-space grid.

If the emitter electron was initially in a state with az-

imuthal and magnetic quantum numbers ! and m, the
reference wave may be taken to be of the form
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R(k)=Y,, (k) , (16)

and the object wave arising from the scattering of this
reference wave by an atom of chemical species X at posi-
tion r; may be written

!
Yik,x;) RUSEA

OX(k,r,-)=Y;m(?,-) s (V)]

r

where fP(k,r;) is the spherical-wave electron-scattering

factor!® of that atom.

Szdke?” pointed out that if the usual holographic as-
sumption (13) holds, the distributions py(r;) may be
recovered by solving the set of linear equations

IR (K) 12+ 3 py (r, )My (K1) =1, (k) , (18)
X,i

which equate the theoretical estimates of the photoelec-
tron intensities to experimental values of these quantities
at different points on the diffraction pattern, since then
the terms outside the square brackets in (15) may be
neglected. He suggested that information about the
scatterers contained in these distributions may be used to
redefine the reference wave R, and the process repeated
until the object waves really become negligible. Szdke?®
and Maalouf et al.?’ have applied an adaptation of this
procedure to recover the electron density of a side chain
of a macromolecule in a numerical simulation of a prob-
lem in x-ray crystallography.

We take a somewhat different approach. Due to experi-
mental errors and limitations of the theoretical estimates
of the experimental intensities, we attempt only to mini-
mize the sum of the absolute errors

E(k)=|R(K)|*+ 3px(r;)My(k,1;) —pul (k) (19)
X,i

of the theoretical estimates of the measured intensities,
where p is a constant of proportionality to be determined.
That is, we attempt to determine the distributions py(x;)
by minimizing

SIEK) . (20)
k

If condition (13) holds, the distributions py(r;) may be
conveniently determined by a linear programming tech-
nique. ¥

However, as we have pointed out earlier, in many
problems, such as that of forward-scattering point-source
electron diffraction, the nonlinear object-wave terms may
be so large that condition (13) may not hold. Under such
circumstances, an algorithm that assumes negligible ob-
ject waves may not converge. On the other hand, if these
terms, represented by the last term in (15), were retained,
the problem becomes the much more difficult one of re-
covering py(r;) by the minimization of a nonlinear func-
tion (19) of that distribution.

We solve this nonlinear problem by the following itera-
tive procedure: at the nth iteration we determine the dis-
tribution p{*(r;) which minimizes the sums of the abso-
lute errors

SIEME), 21)
k
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where
E™(k)=|R (k)|*+ Spi(r; ) MY ~V(k,1;)
X,i
—plp(K) (22)
with
Mfy")(k,r,.)=[R"(k)0X(k r;)+c.c.]
O}k, )Zp ¢ ~0(r;)0z(k,1;) , 23)

a quantity which depends on the best estimate of the
same distribution, p;* _”(r ) at the previous iteration.
The procedure is somewhat analogous to the solutions of
other nonlinear problems, such as the determination of a
self-consistent wave function from a nonlinear Hartree or
Hartree-Fock equation. The iteration cycles are initiated
by arbitrarily choosing an initial distribution pz (r ). We
found that, for the photoelectron diffraction pattern in
'Fig. 2, containing strong forward-scattering peaks, the in-
itial choice of

p(ZO)( j ) =82,X8rj,ri (24)

gave the best results. This choice retains squared object-
wave terms, but neglects cross terms between object
waves due to scattering by different atoms, which have
little overlap in the geometry of the particular cluster of
atoms considered (Fig. 1).

Thus, at each iteration, the errors E (’”(k) are linear
functions of the unknown distributions p{”, since the dis-
tributions p5* ~!) from the previous iteration are assumed
to be known. At each iteration, the distributions py* and
the value of the normalization constant p, which mini-
mize (21), subject to the constraints

O<p(”’(r,~)51 , (25)

Spi(r;)=Ny forall X and r; , (26)
and

120, @7)

where Ny is the number of scattering atoms of type X,
may be determined by a standard linear programming
scheme.3®3! An indication of the flexibility of a linear
programming-based optimization scheme is that the con-
straint (26) is optional, and may be removed if the num-
ber of scattering atoms of each chemical species is not
known beforehand. The iterations are repeated until
self-consistency, i.e., until

(n)(r )Np)((n—l)(ri) . (28)

The fact that spatial distributions py(r;) are recon-
structed simultaneously, but separately for each chemical
species X enables the recovery of not only the positions of
the scattering atoms, but their chemical identities.? In
our earlier paper?® we applied our algorithm to the deter-
mination of the positions of atoms forming a linear chain
passing through an emitter. In this paper, we demon-
strate that it is equally capable of accurately reconstruct-

ing the positions of a three-dimensional cluster of atoms
surrounding an emitter.

VI. THREE-DIMENSIONAL RECONSTRUCTION
BY THE APRIORI ALGORITHM

In this section we describe a practical implementation
of the APRIORI algorithm to the reconstruction from
the diffraction pattern of Fig. 2 of the spatial distribution
Dsi(r;) of the near-neighbor Si-atom scatterers relative to
the B-atom emitter. Each iteration of the APRIORI al-
gorithm was implemented by the revised simplex method
of linear programming.*® For the calculations reported
in this paper we used the relevant subroutine from the
IMSL Math Library. For our problem, the revised sim-
plex method scales with computer time as*

(MN +2D)D +N)?, (29)

where M is the number of points on the spatial grid of pg;
values, N is the number of atomic species of the scatterers
(in our case N =1), and D is the number of data points at
which experiment/theory comparisons are made.

If the positions of the forward-scattering peaks on the
diffraction pattern are assumed to be the projections of
the directions from the emitter at which scatterers are
found, a RIF like those of Figs. 3 and 4 may be recon-
structed by defining a spatial distribution pg(r;) of the
Si-atom scatterers on a uniform grid of points along these
directions only. The threefold rotation symmetry and
mirror planes evident in the diffraction pattern of Fig. 2
indicate that independent data points are contained only
within a symmetry-reduced 60° sector of the diffraction
pattern. Both of these factors help to keep the magni-
tudes of M and D low enough to enable the rapid recon-
struction of the radial image functions along the same
directions as those of Figs. 3 and 4. The corresponding
RIF’s reconstructed by the APRIORI algorithm are
shown in Fig. 5. Not only are the positions of the Si(1)
and Si(4) atoms reconstructed extraordinarily accurately,
but also there are no low-radius artifacts, or residual twin
images, which marred the corresponding RIF’s from the
Barton and SWIFT algorithms in Figs. 3 and 4.

We may also attempt to recover the full three-
dimensional (3D) distribution pg; of the Si scatterers close
to the B emitter. For this purpose we seek to determine
the values of pg; on a Cartesian grid of 33X 33X 33 points
along x, y, and z directions (defined on Fig. 1) in a
10X 10X 10-A> cube centered at the or1g1n (the emitter
position), corresponding to a grid spacing of 0.313 A. In
this case, the number of points, M on the spatial grid of
Dg; values is as high as 35937. The diffraction pattern of
Fig. 2 is displayed from a dataset of about 12 868 data
points arranged on a uniform Cartesian grid. Even al-
lowing for the sixfold reduction due to symmetry, the
number of independent diffraction data points was
D =~2145. The application of the APRIORI algorithm,
for such high values of M and D proved to be unaccept-
ably time consuming on our computer. Since we did not
wish to sacrifice spatial resolution on the reconstructed
distribution pg;, we employed a smaller subset of 64 data
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FIG. 5. Same as Fig. 3 except that the reconstructions were
carried out by the APRIORI algorithm.

points for each run of the APRIORI algorithm. This
yielded a self-consistent distribution p§} after four itera-
tions of the algorithm. A different subset of 64 data
points were next chosen to yield another distribution of
PP, and the process continued until all data points of the
diffraction pattern were utilized. The average of the re-
sulting p§”s was taken as our final reconstructed distri-
bution.

Two sections through the resulting 3D real-space grid
of reconstructed intensities are shown in Fig. 6. The
upper panel represents a section through this 3D array of
intensities, passing through the origin (the position of the
emitter atom, marked by a cross on this figure), and per-
pendicular to the y axis (y cut) in Fig. 1. This plane also
cuts through the atoms Si(1) and Si(4) shown in Fig. 1.
The bright reconstructed intensities in the upper panel of
Fig. 6 are found at exactly the positions of these atoms in
the model used to simulate the diffraction pattern of Fig.
2, and no hint of undesirable twin images is fgund. The
lower panel in Fig. 6 represents the z=0.96 A plane (z
cut) through the reconstructed intensities. The bright in-
tensities in this panel are likewise found exactly at the po-
sitions of the Si(1), Si(2), and Si(3) atoms in this plane.

VII. CONCLUSIONS

We have pointed out that many of the artifacts on the
reconstructed “images” in holographic crystallography
to date may be traced to the neglect of the nonlinear
object-wave terms in the reconstruction algorithms. We
have shown that these problems may be overcome by the
nonlinear reconstruction scheme we call “atomic-position
recovery by iterative optimization of reconstructed inten-
sities” (APRIORI). We have demonstrated this by com-
paring our reconstruction, from a calculated diffraction
pattern, of the positions of Si substrate atoms relative to a
subsurface B-atom electron emitter on a Si(11 1)-V3XV73
B surface, with those by linear reconstruction schemes.

Unlike the linear prescriptions, which are known to have
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z cut at 0.96 A

FIG. 6. Sections through the three-dimensional intensity dis-
tribution reconstructed by the APRIORI algorithm from the
diffraction pattern of Fig. 2. Upper panel: Reconstructed inten-
sity in the y =0 plane containing the positions of the emitter
(denoted by the white cross) and those of the Si(1) and Si(4)
scatterers, marked by spots of high intensity. Lower panel:
Reconstructed intensity in the z =0.96-A plane, where the posi-
tions of the Si(1), Si(2), and Si(3) atoms are also revealed by
spots of high intensity.

difficulties reconstructing an artifact-free image in such a
“forward-scattering” geometry, the APRIORI algorithm
is shown to be capable of recovering a very accurate and
unambiguous real-space distribution of the positions of
the scattering atoms from even a single diffraction pat-
tern, with no hint of the undesirable twin images of clas-
sical holography.
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