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Solution of a Multiple-Scattering Inverse Problem: Electron Diffraction from Surfaces
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We present a solution to the multiple-scattering inverse problem for low-energy electron diffraction
that enables the determination of the three-dimensional atomic structure of an entire surface unit cell
directly from measured data. The solution requires a knowledge of the structure of the underlying bulk
crystal and is implemented by a maximum entropy algorithm.
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In many branches of science, ranging from astronomy
to crystallography, the characteristics of a physical object
are inferred from the angular variation of the intensity
of radiation received from it. Provided the object may
be regarded as real (in the mathematical sense) and the
measured quantities the square moduli of their (invertible)
Fourier transforms, the former may be deduced from the
data by exploiting probability estimates of the combined
phases associated with the dominant intensities [1], by
an oversampling of the data at a density greater than the
Nyquist criterion [2], or by an exploitation of a knowledge
of part of the structure [3].

When multiple scattering is dominant, as in the case of
electron diffraction from a crystal, the absence of a simple
invertible relationship between an object and a scattered
amplitude presents a much greater challenge for the de-
velopment of an inverse method. There have been several
recent proposals for such methods for the solution of
projected crystal structures in high-energy electron diffrac-
tion [4]. To some extent, the direct solution of three-
dimensional (3D) structures from multiply scattered
radiation has been addressed in atomic-source electron
holography [5] by algorithms designed to lock into the
single-scattering component of a multiple-scattering inter-
ference pattern, essentially by a method of matched
filtering [6]. However, due to the decay of object wave
amplitudes with the inverse of the distance from the
source, augmented by a short inelastic scattering length,
such methods tend to reveal the structure of only a rather
local region around the source [7]. In the present Letter,
we demonstrate the solution of the multiple-scattering
inverse problem for the determination of the 3D atomic
structure of an entire surface unit cell in the more classic
crystallographic geometry of a distant external source
of radiation incident on a single sample orientation, as
exemplified by the case of low-energy electron diffraction
(LEED) [8] from a crystal surface.

The solution exploits several key ideas: the first is the
ability to divide the scattering paths into a subset that
scatters from only a known part of the structure, and an-
other that includes scattering from the unknown part. For
LEED we can draw on a holographic analogy in which the
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dynamical (or multiple-scattering) structure factor Fe (or
scattering amplitude from a repeating unit of the surface
due to an incident plane wave of unit amplitude) may be
regarded as a sum

Fe � Re 1 Se (1)

of a known reference wave Re solely from scattering by
the deeper, or bulk, layers, whose structure is assumed
known, and an object wave Se involving scattering from
the unknown surface layers (where e is an index specifying
a data point). The second key is the ability to represent the
total object wave as a linear combination

Se �
X
j

pjOej (2)

of calculable elementary object waves Oej [9]. In the case
of LEED, each of these consists of a renormalized struc-
ture factor of a test layer consisting of a 2D primitive su-
perlattice, containing an atom at a given position j relative
to the bulk crystal. The third key is the interpretation of the
set of non-negative coefficients �pj� of this expansion as
a spatial distribution of the unknown scattering elements,
which may be computed from the measured diffraction
data by a maximum entropy algorithm. In LEED these
scattering elements are primitive sublattices of 2D periodi-
city, and �pj� may be regarded as the spatial distribution
of atoms within a surface unit cell. We develop these ideas
in what follows.

Consider the scattering of an electron from a surface
consisting of an ordered atomic layer above a crystal sub-
strate. We assume that the structure of the substrate is
known and thus that it is possible to calculate exactly the
scattering matrix B21 in a plane-wave basis of the surface
repeat unit from a standard LEED program [10]. In the
usual LEED notation, we describe the corresponding scat-
tering matrices of the test layer by M66, where the second
(first) superscript denotes the direction of the flux of the
incident (scattered) wave with 1 �2� defined towards the
bulk (vacuum). Exploiting the weakness of backscattering
processes compared to forward ones, the scattering paths
involving the test layer and the substrate may be ordered
by the number of backscattering events. The minimum
© 2002 The American Physical Society 115507-1
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number of backscattering processes in a propagation path
of a detectable LEED electron is one. Also, exploiting the
weakness of �90± scattering of electrons of normal inci-
dence (usually employed in LEED) compared with either
forward or backscattering, we approximate the scattering
matrices M66 by “kinematic” or (single-scattering) ex-
pressions that neglect multiple scattering within the test
layer [11]. Define an origin O at the vacuum edge of the
surface, a height h above the uppermost atomic layer of
the substrate (see Fig. 1). The propagation of electrons
below this layer must take account of both refraction and
absorption. Let B be the origin assumed for the definition
of the bulk reflection matrix B21. If a matrix (also in the
plane-wave representation) for the propagation of an elec-
tron from a general point C to another one D is defined as
PDC, we may write

Re � �POBB21PBO�g0 , (3)

where the outer indices g0 specify the matrix elements for
scattering from the incident beam into the Bragg spot index
g, and e represents the combination of g and the electron
energy E. Also, to first order in scattering from the test
layer,

Oej � O
�1�
ej 1 O

�2�
ej 1 O

�3�
ej , (4)

where

O
�1�
ej � �POjM21PjO�g0 (5)

is the bare scattering matrix element, and

O
�2�
ej � �POBB21PBjM11PjO�g0 (6)

and

O
�3�
ej � �POjM22PjBB21PBO�g0 (7)

FIG. 1. Electron propagation and scattering paths giving rise
to the reference wave Re and three dominant contributions O

�1�
ej ,

O
�2�
ej , O

�3�
ej to an elementary object wave Oej due to scattering

from a primitive test 2D lattice with an atom at j in a surface
slab of height h above the outermost bulk layer.
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are the extra contributions to the renormalized matrix
element (or structure factor) that include the dominant
multiple scattering between the test layer and the bulk.
Representative scattering paths followed by electrons
contributing to Re, O

�1�
ej , O

�2�
ej , and O

�3�
ej are illustrated in

Fig. 1. Since the theory involves a single test lattice, mul-
tiple scattering between different sublattices constituting
the real surface slab is neglected. Comparisons with full
multiple-scattering calculations have shown this to be a
reasonable approximation, even for the severe test below
of normal incidence on CO molecules oriented normal to
a surface. All matrices on the right-hand side (RHS) of
(3)–(7) need to be evaluated at an energy of E 2 V0r ,
where V0r is the (negative) real part of the potential step
at the surface [8].

If a LEED structure factor may be written in the form
given by (1)–(7), determination of the distribution �pj�
from constraints imposed by the experimental data would
give the positions of atoms within a slab representing
the surface unit cell [9]. The maximum entropy method
[12–14] provides a prescription for recovering this distri-
bution from incomplete and noisy data. It is based on the
maximization of the functional

Q��p�n�
l �	 � 2

X
l

p
�n�
l ln

"
p

�n�
l

ep
�n21�
l

#
2

l0

2
x2 (8)

of the estimate �p
�n�
l � of the distribution at iteration n. The

first term on the RHS of (8) represents the entropy of �p
�n�
l �

relative to its estimate �p
�n21�
l � at the previous iteration

[15] (where e is base of natural logarithms), while the
second term contains the Lagrange multiplier l0 and the
chi-squared statistic

x2 �
1
N

X
e

jS�n�
e 2 T �n21�

e j2

s2
e

, (9)

with N the number of data points and se the estimated un-
certainty in the measured structure factor amplitude jFej.
The quantity x2 constrains the theoretical estimate of the
total object wave

S�n�
e �

X
l

p
�n�
l Oel (10)

to the experimental one

T �n21�
e � jFej exp�if�n21�

e 	 2 Re , (11)

where the current estimate of the unmeasured phase f�n21�
e

associated with the experimental amplitude jFej is deter-
mined by the distribution �p

�n21�
j � via (10) and

f�n21�
e � arg�Re 1 S�n21�

e 	 . (12)

Q may be maximized by requiring that

≠Q

≠p
�n�
j

� 0 ; j . (13)
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After some algebra one obtains the set of equations

p
�n�
j � p

�n21�
j exp�2l�m�n21�

j 2 t
�n21�
j �	 , (14)

where

m
�n21�
j �

1
N

X
e

Re�S�n21�
e O�

ej� (15)

and

t
�n21�
j �

1
N

X
e

Re�T �n21�
e O�

ej� (16)

provided that all the variances s2
e can be replaced by their

mean value 
s2
e� and l � l0�
s2

e� is sufficiently small
[14,16]. The algorithm is initiated at iteration n � 1 by
taking �p

�0�
j � to be the least biased uniform distribution

normalized to the expected number Na of atoms in the sur-
face unit cell and by using this expression to evaluate m

�0�
j

and t
�0�
j via (10)–(12) and (15)–(16). After completion

of each iteration, the new distribution is renormalized to
the same expected number of atoms. Equation (14) shows
that if all elements of �p

�0�
j � are non-negative, so will be

all elements �p
�n�
j � at any subsequent iteration.

We tested the algorithm first on “pseudoexperimental”
data obtained by simulating, by means of a standard com-
puter program [10], LEED I�E data for the accepted model
of the c�2 3 2�CO�Ni�001� [17,18]. Also required as
input to the calculation of the reference wave Re is the
reflection matrix B21 of the bulk-terminated substrate,
computed by the same program. The calculations of the
propagation matrices, e.g., PjO, for the evaluation of Re

and Oej from (3) and (4), respectively, require only the
evaluation of complex exponentials with arguments con-
taining the (complex) wave vectors of the plane-wave ex-
pansions between the atomic layers and the vectors relating
the fixed reference positions O and B, and the positions, j,
of origin atoms of the test surface layer. The elementary
object waves Oej are computed from (4)–(7), taking M66

to be the kinematic scattering matrices of a c�2 3 2� su-
perlattice of oxygen atoms. The algorithm (14) was first
executed to convergence after 30 iterations with the sum-
mations (15) and (16) for m

�n21�
j and t

�n21�
j over data only

in the so-called integer-order Bragg spots which have a
nonzero contribution from the reference amplitudes Re .
This gave rise to the so-called average structure where the
true superstructure is replaced by its average in each of its
constituent unit cells of the bulk 2D periodicity [14]. Start-
ing phases f�30�

e of the fractional-order (or superstructure)
spots were obtained by interpolation of the arguments of
S�30�

e from the neighboring integer-order spots, and the al-
gorithm resumed with the inclusion also of “experimental”
fractional-order data until a new convergence after a fur-
ther 70 iterations. The distribution of �p

�n�
j � over a 3D

surface slab of height 3.20 Å and lateral extent equal to a
little more than a �2 3 2� unit cell after a total of 100 itera-
tions is depicted in Fig. 2. Despite the fact that Oej was
115507-3
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FIG. 2. Plan view (a) and side elevation (b) of the 3D dis-
tribution �pj� above a Ni(001) surface after convergence of
the maximum entropy algorithm applied to pseudoexperimen-
tal LEED data from c�2 3 2�-CO�Ni�001�. The radii and the
darkness of the small spheres at each point j on a uniform grid
of 39 3 39 3 12 points covering a surface slab above the sub-
strate are proportional to the calculated value of pj . The figures
reveal the correct structure of CO molecules aligned perpendicu-
lar to the substrate and adsorbed in on-top sites. The short hori-
zontal lines at the left in (b) indicate the heights of the C and O
atoms above the surface assumed in the model.

calculated from a test layer consisting of a primitive 2D
lattice of a single atomic species (due to the similarity of
C and O scattering factors, which of these species is taken
to represent the test layer is almost immaterial) the algo-
rithm is able to recover the positions of both the C and O
atoms of the molecules oriented normal to the surface and
adsorbed on the “on-top” sites directly above Ni atoms of
the outermost substrate layer, as assumed in the model.

For a test with experimental LEED data, we chose the
surface of c�2 3 2�Br�Pt�110�. A recent study of possible
Br adsorption sites by conventional LEED [19], which con-
sidered on-top, hollow, as well as long- and short-bridge
locations, found good agreement between experiment and
theory only for adsorption on the short-bridge sites of
a slightly relaxed, buckled, and reconstructed substrate.
Computer time limitations prevented an exhaustive exami-
nation of all possible structures. In contrast, in a real sense,
our method represents a model-independent determination
of the adsorption geometry from the same data [19]. With
the reference wave Re calculated from (3) with B21 from
an ideal bulk-terminated model of the Pt(110) substrate,
115507-3
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FIG. 3. Same as Fig. 2 except that �pj� here represents the
calculated 3D distribution on a grid of 45 3 45 3 8 points
above a Pt(110) surface after convergence of the maximum
entropy algorithm operating on experimental LEED data from
c�2 3 2�-Br�Pt�110� [19]. The figures reveal both the correct
short-bridge adsorption sites of the Br atoms, and their height
above the substrate as determined by a conventional analysis
[19], indicated by the short horizontal line in (b).

and a surface slab height of 2.40 Å , the algorithm was run
initially until convergence after 350 iterations with just the
data in the integer-order Bragg spots. After interpolation
at each energy of the resulting phases of Se to give initial
estimates of the phases of the fractional-order amplitudes,
the algorithm was resumed until final convergence after a
further 225 iterations. The result is an unambiguous inde-
pendent confirmation of the short-bridge adsorption site,
and even an excellent reproduction of the height of the
c�2 3 2� Br adsorbate layer, as determined by the con-
ventional LEED analysis (see Fig. 3). For substrates with
significant surface relaxations or reconstructions, if Re is
computed from the scattering of just the deeper unrecon-
structed bulk, the distribution of �p

�n�
j � in the surface slab

may reveal even the structure of the outermost layers, as
in x-ray diffraction [14].

The calculations of the results of Figs. 2 and 3 required
less than an hour on a modern computer workstation. The
scattering matrices M66 were computed at run time from
input phase shifts of the atoms constituting the test layer.
The bulk reflection matrices B21 were calculated rapidly
from a single run of a standard LEED computer program.
Essentially no assumption was made about the adsorbate
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structure, save the lateral dimensions of the surface unit
cell suggested by the form of the diffraction pattern. Only
as many reference matrices Re needed to be calculated as
there are distinct energies at which data are measured, and
only as many elementary object matrices Oej as this num-
ber multiplied by the number of grid points j within a sym-
metry-reduced sector of the surface unit cell. This product
is independent of the structural complexity of the unit cell.
As demonstrated in the example above of CO�Ni(001), the
algorithm is able to recover the positions of multiple atoms
per surface unit cell even with a single test layer: in such a
case, the distribution �pj� is simply multiply peaked in the
unit cell. The roadblock posed by the practically insuper-
able problem of nonpolynomial scaling of trial-and-error
model fitting methods [20] may thus be bypassed.
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