
Acta Cryst. (2008). A64, 303–315 doi:10.1107/S0108767307067621 303

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 14 March 2007

Accepted 18 December 2007

# 2008 International Union of Crystallography

Printed in Singapore – all rights reserved

Crystallography without crystals. I. The common-
line method for assembling a three-dimensional
diffraction volume from single-particle scattering

V. L. Shneerson, A. Ourmazd and D. K. Saldin*

Department of Physics, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201,

USA. Correspondence e-mail: dksaldin@uwm.edu

It is demonstrated that a common-line method can assemble a three-

dimensional oversampled diffracted intensity distribution suitable for high-

resolution structure solution from a set of measured two-dimensional diffraction

patterns, as proposed in experiments with an X-ray free-electron laser (XFEL)

[Neutze et al. (2000). Nature (London), 406, 752–757]. Even for a flat Ewald

sphere, it is shown how the ambiguities due to Friedel’s law may be overcome.

The method breaks down for photon counts below about 10 per detector pixel,

almost three orders of magnitude higher than expected for scattering by a

500 kDa protein with an XFEL beam focused to a 0.1 mm diameter spot. Even if

103 orientationally similar diffraction patterns could be identified and added to

reach the requisite photon count per pixel, the need for about 106 orientational

classes for high-resolution structure determination suggests that about 109

diffraction patterns must be recorded. Assuming pulse and readout rates of

�100 Hz, such measurements would require �107 s, i.e. several months of

continuous beam time.

1. Introduction

X-ray crystallography is one of the key contributions of the

physical sciences to the life sciences. Its application to bio-

logical, biochemical and pharmaceutical problems continues

to enable breakthroughs (Cramer et al., 2001; Gnatt et al.,

2001) highlighting the importance of structure to function.

However, roughly 40% of biological molecules do not crys-

tallize and many cannot easily be purified. These factors

severely limit the applicability of X-ray crystallography;

although more than 750000 proteins have been sequenced, the

structures of less than 10% have been determined to high

resolution (Protein Data Bank, http://www.pdb.org). The

ability to determine the structure of individual biological

molecules – without the need for purification and crystal-

lization – would constitute a fundamental breakthrough.

The confluence of five factors has generated intense interest

in single-molecule crystallography by short-pulse X-ray scat-

tering. (a) The advent of algorithms for determining phases

from measured diffraction intensities by successive and re-

peated application of constraints in real and reciprocal spaces

(see e.g. Fienup, 1978; Elser, 2003; Millane, 2003), with

demonstrations in astronomy (Fienup, 1982), diffractive

imaging of nanoparticles (Williams et al., 2003; Wu et al., 2005;

Chapman et al., 2006), biological cells (Shapiro et al., 2005;

Thibault et al., 2006), small-molecule crystallography

(Oszlányi & Süto��, 2004; Wu, Spence et al., 2004), surface

crystallography (Kumpf et al., 2001; Fung et al., 2007) and

protein crystallography (Miao et al., 2001; Spence et al., 2005).

(b) Development of sophisticated techniques for determining

the relative orientation of electron-microscope images of

biological entities, such as cells and large macromolecules (see

e.g. Frank, 2006). (c) Development of techniques for pro-

ducing beams of hydrated proteins by electrospraying or

Raleigh-droplet formation (Fenn, 2002; Spence et al., 2005).

(d) The promise of very bright ultra-short pulses of hard

X-rays from X-ray free-electron lasers (XFELs) under

construction in the US, Japan and Europe (Normille, 2006).

(e) The prospect of overcoming the limits to achievable

resolution due to radiation damage by using short pulses of

radiation (Solem & Baldwin, 1982; Neutze et al., 2000).

It has been suggested (Neutze et al., 2000; Hajdu et al., 2000;

Abela et al., 2007) that an experiment to determine the

structure of a biological molecule might, in principle, proceed

as follows. (i) A train of individual hydrated proteins is

exposed to a synchronized train of intense X-ray pulses. As a

single pulse is sufficient to destroy the molecule, the pulses

(and data collection) must be short compared with the roughly

50 fs needed for the molecular constituents to fly apart

(Neutze et al., 2000; Jurek et al., 2004). (ii) The two-dimen-

sional diffraction patterns obtained with single pulses are read

out, each pattern corresponding to an unknown random

orientation of the molecule. (iii) The relative orientations of

the molecule corresponding to two-dimensional diffraction



patterns (and hence the relative orientations of each diffrac-

tion pattern in three-dimensional reciprocal space) are

determined. (iv) A noise-averaged three-dimensional

diffracted intensity distribution is constructed. (v) The struc-

ture of the molecule is determined from the diffracted inten-

sity distribution by an iterative ‘phasing algorithm’ (Miao et

al., 2001). As pointed out by Huldt et al. (2003), for this

approach to succeed in principle, it is necessary to develop a

noise-robust algorithm to determine the relative orientations

of diffraction patterns obtained from randomly oriented

individual molecules, to reconstruct the three-dimensional

diffracted intensity distribution of sufficient quality, and to

determine the secondary structure of individual biological

molecules.

In brief, starting with a collection of noisy two-dimensional

diffraction patterns of unknown orientation, such a method

recovers the three-dimensional electron density of a molecule,

providing a quantitative measure of the reliability of the

reconstruction. It has been suggested that an algorithm

developed for the analogous problem of reconstructing a

three-dimensional image of a large molecule or nanoparticle

from different projected electron-microscope images, the

method of common lines, may be employed for this task. We

investigate the capabilities and limitations of such an approach

for structure recovery from simulated short-wavelength

diffraction patterns of a small (10 residue) synthetic protein,

chignolin (Protein Data Bank entry: 1uao).

Starting with 630 simulated noise-free two-dimensional

diffraction patterns of 0.1 Å wavelength X-rays from random

orientations of the molecule, we show that such an algorithm is

able to recover the electron-density distribution of the (small)

test protein molecule, chignolin, up to about 1 Å resolution

with a fidelity measured by a correlation coefficient of 0.7

between the model and recovered electron-density distribu-

tions. This constitutes the first demonstration of an integrated

algorithm able to perform all the tasks necessary to extract a

molecular electron density from a set of two-dimensional

diffraction patterns of random unknown orientations. We have

also investigated the limits of the algorithm with respect to

shot noise (modeled by Poisson statistics) in the detected

signal. Our results show that the common-line method

requires at least 10 photons pixel�1. This is at least two orders

of magnitude higher than the anticipated signal levels from the

LCLS XFEL currently under construction.

The algorithm consists of three primary modules: (a)

determination of the relative orientations of the measured

diffraction patterns in three-dimensional reciprocal space;

(b) from the resulting irregular distribution of diffracted

intensities, application of a gridding algorithm to generate

data on a uniform rectilinear grid in reciprocal space; (c)

application to this gridded data of a three-dimensional itera-

tive algorithm to find the phases associated with the grid

intensities and recover the three-dimensional electron density

of the molecule. For an experiment which provided indepen-

dent information about the orientations of the sample, steps

(b) and (c) were previously implemented by Chapman et al.

(2006).

2. Determination of the relative orientations of the
diffraction patterns

In the following, we assume that the X-ray energy is high

enough and the solid angle subtended by the diffraction

pattern at the sample small enough that it is a reasonable

approximation to consider each diffraction pattern as a planar

central section through the three-dimensional reciprocal space

of the molecule. In practice, this is valid for X-ray wavelengths

of about 0.1 Å. Then, the problem reduces to determining the

relative orientations of these planar sections from the data in

the diffraction patterns alone without any knowledge of the

structure of the molecule. For longer wavelengths, as pointed

out previously (e.g. Huldt et al., 2003; Chapman, 2007), it will

be necessary to take account of the curvature of the Ewald

sphere when the common lines become arcs of a circle rather

than straight lines. The extra complexity of identifying such

arcs may be offset by two factors: (i) the avoidance of ambi-

guities stemming from the duplication of intensities in the

same two-dimensional diffraction pattern, due to Friedel’s law

(see below); and (ii) the possibility of determining all three

Euler angles relating the orientations of any two diffraction

patterns from just their mutual common line (Huldt et al.,

2003) if the extra parameter of the radius of curvature of the

common arcs may be determined with sufficient accuracy.

Our approach is inspired by the analogous problem of

reconstructing the three-dimensional structure of a macro-

molecule or nanoparticle from electron-microscope images

representing projections of copies of the object along random

directions (Frank, 2006). This problem has been solved by

exploiting the central section theorem (Farrow & Ottens-

meyer, 1992), and has been developed most notably by these

authors and also previously by van Heel (1987) and Gon-

charov et al. (1987). From the projection-slice theorem, the

Fourier transform of a two-dimensional (i.e. projected) image

is a central slice through the complex three-dimensional

reciprocal space of the three-dimensional object. Any two

central sections intersect along a line. This allows partial

alignment of the two central sections with respect to each

other. Specifically, determination of the gradients of this

common line relative to, say, two-dimensional Cartesian

coordinate systems in the planes of each of the central sections

allows two of the three Euler angles specifying the relative

orientations of these central sections to be deduced. Using this

procedure, it is generally possible to determine six of the nine

interplanar Euler angles from three independent diffraction

patterns. Knowledge of these six Euler angles allows the

remaining three to be deduced by geometrical construction.

We point to one important difference between an applica-

tion of the common-line approach to images (as in three-

dimensional electron microscopy) and diffraction patterns.

The images constitute projections of the object in real space.

Some applications of the central section theorem have been

performed in reciprocal space, exploiting the fact that two-

dimensional Fourier transforms of these images yield moduli

and phases of complex amplitudes on central sections through

reciprocal space. Sinograms of the data of any two diffraction
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patterns allow the unique identification of a pair of Euler

angles relating the two central sections in three-dimensional

reciprocal space (Frank, 2006). In contrast, in our problem, the

raw experimental data are diffracted intensities and direct

information is available only about the moduli of the complex

amplitudes in reciprocal space.

Friedel’s law of crystallography suggests that the intensity

distribution along a radial line through the center of each

diffraction pattern is the same as one rotated relative to it by

180�. This means that, for a flat Ewald sphere, the determi-

nation of the pair of Euler angles from common lines is

uncertain by �180�. Any significant curvature of the Ewald

sphere removes this ambiguity but, even for a flat Ewald

sphere, this uncertainty may be resolved through consistency

conditions amongst the Euler angles, as shown below.

2.1. Determination of two Euler angles between two
intersecting diffraction patterns

Fig. 1 illustrates the reciprocal-space geometry of two

central sections, representing diffraction patterns, P1 and P2.

Let the Euler angles relating P1 and P2 be �12, �12 and �12.

Consider three Cartesian axes X, Y and Z, where X and Y lie

in the plane of P1 and Z is normal to it. Diffraction pattern P2

is related to P1 by a set of three rotations. The initial rotation

is through the azimuthal angle �12 about the Z axis. Next

follows a rotation through �12 about the X axis obtained after

the first rotation. Let us denote this axis by C12. The final

rotation is through �12 about the new Z axis, denoted Z0. It is

clear from the figure that C12 is the line of intersection

between P1 and P2, i.e. the common line.

The orientation of the common line C12 relative to the

(X, Y) Cartesian axes in the plane of P1 is shown in Fig. 2. The

gradient m12 of C12 with respect to the (X, Y) axes in the plane

of P1 is given by

m12 ¼ tan ð�12Þ ð1Þ

and hence the Euler angle

�12 ¼ arctan ðm12Þ ð2Þ

can be determined if the common line C12, and hence its

gradient in the plane of P1 relative to the Cartesian axes

(X, Y), can be identified.

Now note that, since C12 is the common line, it must also be

contained in the plane of P2 after the Euler-angle rotations. Its

orientation relative to the Cartesian axes (X0, Y0) in the plane

of P2 is depicted in Fig. 3. Its gradient m21 relative to the axes

(X0, Y0) in P2 is

m21 ¼ � tan ð�12Þ ð3Þ

and hence the Euler angle

�12 ¼ arctan ð�m21Þ ð4Þ
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Figure 1
Transformation of central section P1 into P2 by rotation through Euler
angles �12, �12, and �12.

Figure 3
Orientation of common line C12 relative to the Cartesian axes (X 0;Y 0)
after the Euler-angle rotations in the diffraction pattern P2.

Figure 2
Orientation of common line C12 relative to the Cartesian axes (X, Y) in
the central section of P1.



may be determined if the common line C12, and hence its

gradient in the plane of P2 relative to the Cartesian axes

(X0, Y0), can be identified in the diffraction pattern in that

plane.

Given two diffraction patterns, a pairwise numerical

comparison [sinogram comparison (Frank, 2006)] of the

intensity distributions along radial directions of the two

patterns may be conducted. An automated criterion, such as

an R factor, monitors the degree of agreement. An exhaustive

search is performed of all pairs of radial distributions of the

intensities on the two patterns. A global minimum of the R

factor is assumed to determine the common line. For the

diffraction patterns P1 and P2 above, denote the common line

by C12. This gives estimates of the Euler angles �12 and �12.

Figs. 4(a) and 4(b) show two simulated diffraction patterns

(40 � 40 pixels) from random orientations of our test protein,

chignolin. The maximum lateral wavevector in the direction of

the x axis was ten times the Nyquist frequency for the assumed

lateral extension of the protein (16 Å). This corresponds to a

reciprocal-space length of q ¼ 2�ð10Þ=16 ¼ 3:93 Å�1. The

wavevector, k, of 124 keV hard X-rays is about 63 Å�1. The

scattering angle corresponding to the middle of an edge

of the square diffraction pattern was calculated from

2 arcsinðq=2kÞ ¼ 3:2�. The central part of each diffraction

pattern contains high intensities of relatively low detail but

several orders of magnitude stronger than in the outer parts of

the pattern containing the high-resolution structural infor-

mation. A numerical search for the common lines between the

two patterns of Fig. 4 was performed by pairwise comparisons

of the radial intensity distributions from the two patterns in

angular steps of 1�, excluding the pixels within a central high-

intensity disc of 7 pixels radius corresponding to a scattering

angle of �1�. Effectively, the values of the azimuthal Euler

angles �12 and �12 were identified by a contour plot of the

form shown in Fig. 5. The identified common lines are also

shown in Figs. 4(a) and 4(b). Owing to the Friedel law

degeneracy mentioned above, any 180� range of azimuthal

angles would be expected to contain such a minimum. For

convenience, we perform numerical searches for �12 and �12

angles over an azimuthal angle range of 0 to 180�. Then

Friedel’s law suggests equally valid values for these angles

of �12 + 180� and �12 + 180�, respectively. Without phase

information, it is impossible to tell from the diffraction data

alone which of the two values of each angle is ‘correct’.

In the case of the flat Ewald sphere considered here, it is not

possible to determine the Euler angle �12 between the

normals to these planes with the data in the diffraction

patterns P1 and P2 alone. In order to determine that angle, it

is necessary to have diffraction data in at least one more
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Figure 4
Identification of the common line in two typical simulated diffraction
patterns from a model of the protein chignolin, leading to a determination
of the azimuthal Euler angles � and � relating the three-dimensional
orientations of the diffraction patterns.

Figure 5
Contour map of sinogram comparisons between the two diffraction
patterns of Fig. 4 in the vicinity of the global minimum at � = 58�, � = 21�.



distinct reciprocal-space plane, which intersects the planes of

P1 and P2 along two further distinct common lines.

2.2. Determination of all nine Euler angles relating three
general central sections

Let P3 denote a third diffraction pattern (Fig. 6). Since each

diffraction pattern forms a central section through reciprocal

space, each pair of diffraction patterns intersects along a

common line, with the three common lines intersecting at t

he origin (O in Fig. 6). Denote the Euler angles specifying

the transformation of the plane of P2 to that of P3 by

(�23;�23;�23), and those transforming plane of P3 to that

of P1 by (�31;�31;�31). In the notation of Fig. 6, the

common line between P1 and P2 is denoted by OC, that

between P2 and P3 by OA, and that between P3 and P1 by

OB, with A, B and C representing points on the surface of a

unit sphere centered on O.

By analogy with the method described in the last section, a

comparison of the diffraction intensities of P2 and P3 can

determine the Euler angles �23 and �23. Likewise, com-

parison of the data of P3 and P1 can determine the angles �31

and �31. This leaves only three angles to be determined: �12

between P1 and P2; �23 between P2 and P3; and �31

between P3 and P1.

The geometrical construction of Fig. 6 shows that the

remaining Euler angles are the vertex angles ffACB, ffBAC

and ffCBA of the spherical triangle ABC on the surface of the

unit sphere. Also note that the lengths of the sides of this

spherical triangle (the arcs CB, BA and AC) are equal to the

sums of angles �31þ�12 ¼ �312 (say), �12þ�23 ¼ �123

(say) and �23þ�31 ¼ �231 (say), respectively (expressed in

radians). [For example, if we consider a transformation from

plane 3 to plane 1 followed by one from plane 1 to plane 2,

then the third Euler angle in the former transformation (�31)

and the first Euler angle in the latter transformation (�12)

involve rotations in the same plane, that of P1.]

The cosine rule of spherical trigonometry gives

cos ðABÞ ¼ cos ðCAÞ cos ðCBÞ þ sin ðCAÞ sin ðCBÞ cos ðffACBÞ;

ð5Þ

that is,

cos �231 ¼ cos�123 cos�312 þ sin �123 sin �312 cos ð�12Þ ð6Þ

and thus

�12 ¼ arccos
cos �231 � cos�123 cos�312

sin �123 sin �312

� �
: ð7Þ

This expression was obtained by Goncharov et al. (1987) by a

different argument.

Generalizing this result for a triplet of diffraction patterns i,

j and k, the angle �ij between i and j is given by

�ij ¼ arccos
cos �jki � cos�ijk cos �kij

sin �ijk sin �kij

� �
; ð8Þ

where

�ijk ¼ �ij þ�jk; ð9Þ

�kij ¼ �ki þ�ij; ð10Þ

and

�jki ¼ �jk þ�ki ð11Þ

with k a third plane.

The above analysis shows that, provided the Euler angles �
and � specifying the directions of common lines between any

three sets of diffraction patterns i, j and k are determined (e.g.

by comparisons of sinograms from the diffraction patterns),

the Euler angles � about the ‘hinge axes’ formed by the

common lines amongst those diffraction patterns can be

deduced by the analytic formula (8).

2.3. Removal of the ambiguities due to Friedel’s law

As pointed out in the previous section, the Euler angles �
and � may be determined from the diffraction pattern data

only to modulo 180�, due to Friedel’s law. Thus, in addition to

initial values (in the range 0 to 180�) assigned to these angles

by the automated numerical sinogram comparison, one must

also consider as possible values of these angles � + 180� and

� + 180�, respectively. The possibility of two values for each of

the three � angles and two for each of the three � angles

implies four possible values of each of the � angles in

expressions (9), (10) and (11). Since three distinct � angles

enter into the formula (8), there are 43 = 64 possible values of

�ij for a given set of � and � angles deduced from three

different diffraction patterns.

In fact, this is not the case. Many combinations of � and �
give rise to the same �ij and a large number of combinations

result in arguments of the arccos function in (8) outside the

range of �1 to 1, giving no geometrically meaningful solution
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Figure 6
Geometrical construction for determining the relative Euler angle �12
between diffraction patterns P1 and P2, given the six Euler azimuthal
angles � and � relating P1, P2 and P3.



at all. This eliminates all but two sets of the three � angles.

The remaining ambiguity is due to the well known enantio-

metric ambiguity of molecular structures that give rise to the

same diffraction intensities. This ambiguity is impossible to

resolve from the diffraction data alone. An arbitrary but

consistent choice of one of the two sets of � angles produces

one of the two enantiomers of the structure.

A concrete example from a simulation of three diffraction

patterns, 1, 2 and 3, from random orientations of the same

molecule is illustrative. The � and � angles of Table 1 were

determined by numerical comparisons of sinograms of the

three patterns.

Substituting all 64 combinations of � and �þ �, and � and

�þ � into equations (8)–(11) results in 46 combinations with

values for the cosine of the relevant angle � lying outside the

range �1 to 1. Nine of the 64 combinations give rise to the �
angles in Table 2.

Another nine combinations give rise to the values for the �
angles in Table 3.

It turns out that the two sets of values of the � angles

determined by this method correspond to the two enantio-

metric solutions referred to above. Thus the method described

rules out Friedel-pair combinations of common-line directions

that are unphysical, producing just the two enantiomers

consistent with the diffraction data.

2.4. Averaging and self-consistency checks

A particular angle �ij may be estimated from (8) by taking

as the third diffraction pattern k any one of the N � 2 other

diffraction patterns. Each choice of third diffraction pattern

will yield two possible (usually widely separated) values of �ij,

corresponding to the two possible enantiomers. This time,

since we have already chosen an enantiomer in our previous

estimate of �ij using a different third diffraction pattern, we

choose the solution that is closest to the previously selected

value of �ij, i.e. the same enantiomer. The finally assigned

value of this angle will be the average of these values

computed by (8) via all possible third planes k, namely:

�ij ¼
1

N � 2

X
k 6¼i;k 6¼j

arccos
cos�jki � cos �kij cos�ijk

sin �kij sin �ijk

� �
: ð12Þ

The calculations of the � angles via (12), including the tests of

enantiomeric consistency, are very rapid. The bulk of the

computational time involves the sinogram comparisons for

diffraction pattern pairs. The time for these computations

scales as the total number of pairs amongst N diffraction

patterns, namely NðN � 1Þ=2. To save computational time for

the 630 diffraction patterns, we divided them into sets of about

ten diffraction patterns each. So long as two diffraction

patterns are common to each of these sets of about ten, the

method determines the relative orientations of all diffraction

patterns relative to these two for a given enantiomer, with a

computational time saving of a factor of approximately

ð630=10Þ2 ’ 4000.

A method of sinogram matching determines common-line

directions by comparison between pairs of projections/

diffraction patterns at a time. Farrow & Ottensmeyer (1992)

have suggested a method of simultaneously taking account of

data from all available projections by means of quarternion

mathematics. We propose here an alternative method of

ensuring that all determined Euler angles are consistent with

the data of all available diffraction patterns. With noisy data,

such a self-consistency condition may even help reduce some

of the errors due to noise. Consider any three non-coplanar

diffraction patterns, i, j and k. Then,

Rð�ij;�ij;�ijÞRð�jk;�jk;�jkÞRð�ki;�ki;�kiÞ ¼ I; ð13Þ

where R is the three-dimensional rotation matrix, which

transforms plane i to plane j in three-dimensional reciprocal

space and I is the three-dimensional unit matrix.

Since Rð�jk;�jk;�jkÞ
�1 ¼ Rð�kj;�kj;�kjÞ, and

Rð�ki;�ki;�kiÞ
�1 ¼ Rð�ik;�ik;�ikÞ, equation (13) may be

rewritten as

Rð�ij;�ij;�ijÞ ¼ Rð�ik;�ik;�ikÞRð�kj;�kj;�kjÞ; 8 k:

ð14Þ

If the � and � angles on the RHS of (14) have been found by

sinogram matching and the � angles on the RHS via equation

(12), equation (14) may be used to update the Euler angles �ij,

�ij and �ij on its LHS. Since, for given planes i and j, there are

N � 2 other planes k, these angles may be calculated inde-

pendently from N � 2 equations of the form (14), and the

values averaged. A different pair of planes ij can then be
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Table 1
� and � Euler angles (in degrees) relating diffraction patterns from three
random orientations of the molecule, as determined by numerical
sinogram comparisons.

Pair � �

(1, 2) 16.0 108.0
(2, 3) 173.0 174.0
(3, 1) 121.0 132.0

Table 2
One set of three (hinge) angles � (in degrees) between the three
diffraction patterns oriented in three-dimensional reciprocal space,
deduced from equation (8).

Pair �

(1, 2) 114.2
(2, 3) 144.4
(3, 1) 103.4

Table 3
Another set of values of the same � angles (in degrees) as in Table 2, as
determined by the same method.

This solution corresponds to the enantiomer structure.

Pair �

(1, 2) 19.1
(2, 3) 12.1
(3, 1) 159.5



selected and the procedure repeated to update the Euler

angles on the LHSs of (14) relating all pairs of planes.

To summarize this section, we have described a detailed

procedure for orientating in three-dimensional reciprocal

space a large number of diffraction patterns from random

unknown orientations of an object without any knowledge of

the structure of the object. The recovery of a molecular elec-

tron density from such data requires the determination of the

phases associated with these intensities. This may be done by

the method of oversampling (Miao et al., 2001), involving

iterative Fourier transformations of the data from reciprocal

to real space and applications of appropriate constraints in

each of the spaces. A conventional fast Fourier transform

(FFT) algorithm (Cooley & Tukey, 1965) requires data on a

regular Cartesian grid in each space. Thus, it is necessary to

perform a gridding operation in three-dimensional reciprocal

space to prepare the data for such an iterative phasing

algorithm.

3. Forming a regular three-dimensional diffracted
intensity grid from randomly inclined central sections

We perform this three-dimensional gridding operation by

means of the MATLAB routine, griddata3. This routine fits a

hypersurface of the form w ¼ f ðx; y; zÞ to the irregularly

spaced data from the randomly inclined central sections in

reciprocal space, using a tessellation-based linear interpola-

tion, which incorporates the method of Delaunay triangula-

tion (Delaunay, 1934), see Fig. 7. The density of the uniform

three-dimensional grid points was chosen to ensure over-

sampling with respect to the Nyquist criterion for an object of

the size of our test molecule. For the purposes of our present

simulation, where the small test protein chignolin is known to

be smaller than a cube of linear dimension 16 Å, we take a

reciprocal-space sampling corresponding to the Nyquist

frequency of a cube of double this linear dimension, namely

32 Å. That is, sampling frequency of the uniform rectilinear

three-dimensional reciprocal-space grid is twice the Nyquist

frequency corresponding to the diameter of the object in each

of the three linear dimensions.

As the test was performed on simulated data, the efficiency

of the determination of the relative orientations of the simu-

lated diffraction patterns and of the gridding algorithm could

be evaluated by comparing the diffraction data on the final

uniform three-dimensional Cartesian grid with diffraction

intensities calculated directly on the same grid from the PDB

atomic data. The usual X-ray R factor was used to compare the

two data sets. For our simulation of 630 diffraction patterns

from the protein chignolin, we obtained an R-factor value of

0.04, indicating a high fidelity for the orientation and gridding

process.

4. Phasing of the diffraction data and the recovery of
the three-dimensional molecular electron density

The determination of the phases associated with the gridded

diffraction data, and hence the three-dimensional molecular

electron density, was performed by a combination of an

iterative oversampling algorithm (Miao et al., 2001), which

successively imposes constraints/modifications of the electron

density in real space through object domain operations (ODO)

(Fienup, 1978; Oszlányi & Süto��, 2004) and in reciprocal space

(Oszlányi & Süto��, 2005).

The three-dimensional Fourier transform of the gridded

diffraction intensities yields the three-dimensional auto-

correlation function of the molecular electron density. Since

the extent of the autocorrelation map is twice that of the

electron-density map, the approximate spatial extent of the

molecular electron density can be found directly from the

diffraction intensities (Marchesini et al., 2003).

A flow chart and pseudo-code of our iterative phasing

algorithm is shown in Fig. 8. The square roots of the gridded

diffraction intensities are assumed proportional to the protein

structure factors Fq, say, where a reciprocal-space vector q is

defined by

q ¼ hb1 þ kb2 þ lb3; ð15Þ

where the unit vectors bi (i ¼ 1; 2; 3) of the reciprocal space

are defined by the usual relationships

bi � aj ¼ �ij ð16Þ

with respect to real-space unit vectors aj so chosen as to define

a three-dimensional volume expected to contain the molecule.

Since the phases associated with these structure factors are

initially unknown, we begin by assigning random phases to

those structure factors Fq corresponding to values of the Laue

index l 	 0. Assumption of Friedel’s law,

F�q ¼ F
q ; ð17Þ

then allows the assignment of complex structure factors for

l< 0. An (inverse) FFT algorithm calculates an initial three-

dimensional electron-density distribution, whose reality (in

the mathematical sense) is assured by the above Friedel
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Figure 7
Two-dimensional representation of the three-dimensional gridding
process. Data from regular grids on randomly oriented central sections
are interpolated onto a regular rectilinear three-dimensional grid
convenient for a fast Fourier transform routine.



relationship amongst the structure factors. In general, the

computed electron density is spread over a real-space volume

larger than that of the molecule. A support constraint is now

applied in real space by setting to zero the electron density

outside the volume expected to be occupied by the protein

(Fienup, 1978). In addition, the electron density within the

expected volume of the protein is modified according to the

charge flipping prescription of Oszlányi & Süto�� (2004) [which

was shown by Wu, Weierstall et al. (2004) to be a special case

of Fienup’s (1982) output–output algorithm with feedback

parameter � ¼ 2]. According to the charge flipping prescrip-

tion, electron-density values that exceed a certain threshold �
are unmodified, while the signs of those below this threshold

are reversed. The value of this threshold is chosen to optimize

the progress of the algorithm, as monitored by an R factor

between the gridded ‘experimental’ structure factors and

those calculated from a Fourier transform of the electron

density recovered by the algorithm. (The value for � taken in

practice was typically around 10% of the maximum electron

density.) A Fourier transform of the modified electron density

specifies the same distribution in reciprocal space. The

continued reality of this modified electron density ensures that

the resulting calculated structure factors have phases satis-

fying Friedel’s law.

A different threshold is employed to divide the reciprocal-

space amplitudes into strong and weak reflections. The

magnitude of the threshold amplitude was again monitored by

the same R factor as for the real-space threshold above. The

optimum division was found when 55% of the weakest

reflections were classified as weak. A reciprocal-space

constraint is applied to the strong reflections: their amplitudes

(or moduli) are replaced by the square roots of the corre-

sponding measured intensities, while retaining the phases from

the Fourier transform operation. As for the weak reflections,

their moduli are left unchanged, but their phases are shifted by

�=2. The resulting set of complex structure factors is then

subject to an inverse Fourier transformation, which yields

another real-space electron distribution. This is modified in

the same way as before, and the whole process repeated for

several iterations. This algorithm constrains the solution to be

consistent with the measured intensities of the strong reflec-

tions in reciprocal space, and to the expected size of the object

in real space. Subject to these constraints, it allows a thorough

exploration of configuration space by iteratively modifying the

phases of the weak reflections in reciprocal space and the signs

of the small electron densities in real space.

5. Results for noise-free simulations

We have tested the effectiveness of this algorithm on a set of

630 simulated diffraction patterns computed out to about 1 Å

resolution from random orientations of the small synthetic

protein chignolin, simulated from the atomic elements and

coordinate data taken from the Protein Data Bank and atomic

scattering factors calculated from the relevant Cromer–Mann

coefficients (Cromer & Mann, 1968).

We then employed our common-line method to determine

the Euler angles specifying the relative orientations of each of

the simulated diffraction patterns. A typical comparison of the

recovered angles with the known angles from the simulations

is shown in Table 4.

Occasionally, the common-line search (x2) does not succeed

in accurately finding the Euler angles � and � relating a pair

of diffraction patterns. If an angle � is calculated from such

inexact values, the calculated argument of the arccosine in

equation (8) may not lie in the range þ1 to �1 and thus may

not yield a value for the Euler angle �. As shown by Table 4,

this is the case for the � angle relating diffraction patterns

(0, 9) and (0, 10). In such cases, we simply ignore the data in

diffraction patterns 9 and 10. Proceeding in this way, we were
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Figure 8
Flow chart and pseudo-code of the iterative phasing algorithm.



able to determine self-consistent solutions for the orientations

of 401 out of the 630 diffraction patterns simulated. For our

sample of 11 diffraction patterns, the mean accuracy of the

Euler-angle determination is about 2�. We used the data of the

401 correctly oriented diffraction patterns to assign intensities

to an irregularly spaced set of points in reciprocal space.

Is this sufficiently accurate? In order to answer this ques-

tion, one has to ask how accurately one needs to determine

these angles to correctly assign intensities in each of the points

of an oversampled three-dimensional reciprocal-space grid.

The required angular accuracy is thus determined by the

angular extent of a reciprocal-space voxel of the highest

resolution subtended at the origin of reciprocal space. Since

the width of a reciprocal-space voxel is 1=ð2LÞ (Huldt et al.,

2003), where L is a linear dimension of the molecule investi-

gated, the angular resolution required is 1=ð2LÞ=ð1=RÞ =

R=ð2LÞ rad, where R is the required resolution. For the

example of the small protein modeled here, taking L = 15 Å

and R = 1 Å, we may deduce that the required angular reso-

lution is about 1=30th of a radian, or about 2�. Table 4 shows

that this is achieved.

Application of the gridding algorithm of x3 produced a set

of diffraction intensities on such a uniform grid of points in

three-dimensional reciprocal space. Subsequent application of

the iterative phasing algorithm of x4 recovered the electron-

density distribution in the lower panel of Fig. 9 in about 65

iterations of the phasing algorithm.

For purposes of comparison, we also simulated the complex

structure factors (amplitude and phase) on the same over-

sampled three-dimensional grid of reciprocal-space points as

used in the iterative phasing algorithm. An inverse Fourier

transform of these (correct) complex structure factors
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Figure 9
Electron density of protein chignolin (PDB entry: 1uao) to about 1 Å
resolution. Upper panel from PDB model. Lower panel from multiple
diffraction patterns of molecule in random orientations. The secondary
structure is clearly visible.

Table 4
Relative orientations of copies of a single molecule, as specified by a set
of Euler angles �, � and �, and the same angles recovered by the
identified common lines between pairs of the diffraction patterns
(reciprocal-space planes) labeled 0 to 10, and analytical formulae
described in the text.

Also shown are the mean absolute errors in the determinations of these angles
(all angles specified in degrees).

Pair of
planes

Recovered/actual
�

Recovered/actual
�

Recovered/actual
�

(0, 1) 64.0/64.3 148.2/144.6 48.0/48.3
(0, 2) 16.0/20.8 18.7/20.6 2.0/177.6
(0, 3) 48.0/48.7 79.3/81.8 90.0/90.4
(0, 4) 144.0/140.5 40.8/43.5 118.0/122.4
(0, 5) 16.0/13.9 14.2/16.0 108.0/110.3
(0, 6) Not found
(0, 7) 174.0/174.2 138.9/138.2 100.0/99.6
(0, 8) 90.0/90.0 92.3/87.9 168.0/169.7
(0, 9) Not found
(0, 10) Not found
Mean error 1.7 2.5 2.0

Table 5
Comparison of the determination of the relative Euler angles of the same
11 diffraction patterns as for the noise-free case of Table 4 for noisy
diffraction patterns with mean photon count of 10 photons pixel�1, with
the (shot) noise modeled by a Poisson distribution.

Pair of
planes

Recovered/actual
�

Recovered/actual
�

Recovered/actual
�

(0, 1) 68.0/64.3 150.6/144.6 52.0/48.3
(0, 2) 14.0/20.8 18.1/20.6 4.0/177.6
(0, 3) 48.0/48.7 85.6/81.8 92.0/90.4
(0, 4) Not found
(0, 5) Not found
(0, 6) Not found
(0, 7) 174.0/174.2 144.3/138.2 100.0/99.6
(0, 8) Not found
(0, 9) Not found
(0, 10) Not found
Mean error 2.8 4.6 3.0



recovered the protein electron-density distribution in the

upper panel of Fig. 9 at a resolution consistent with the extent

of the diffraction data.

The recovered electron density is in reasonable agreement

with that of the starting model, with a correlation coefficient of

0.7 between the two electron-density distributions.

6. Effect of shot noise in measured diffraction patterns

Even with radiation from an ultra-bright source such as an

XFEL, the expected number of detected photons per pixel of

a diffraction pattern from a single biomolecule is expected to

be very small. Therefore, it is important to investigate the

robustness of any algorithm to shot noise. We do this by

assuming different mean photon counts per pixel �I0I0 in the

high-resolution (or high-q) part of the diffraction pattern. If I0

is the expectation value of the photon count at any particular

pixel, the actual number I of detected photons is determined

by the Poisson distribution

pðI=I0Þ ¼
II

0

I!
expð�I0Þ; ð18Þ

where pðI=I0Þ is the probability of measuring I photons. By

comparing with the noise-free simulations, we investigated the

effectiveness of the common-line algorithm in determining the

relative Euler angles of the same diffraction patterns 0–10 of

Table 4 for mean photon counts per pixel �II0 ¼ 100 and
�II0 ¼ 10.

The results of Table 4 were almost perfectly reproduced for
�II0 ¼ 100, but there was substantial deterioration of the fidelity

of the determined Euler angles for a mean photon count of
�II0 ¼ 10 (Table 5).

In the same subset of ten diffraction patterns, the algorithm

was able to determine just four sets of relative Euler angles

out of ten, with a mean angular accuracy of about 3.5�. We

stated earlier that the required angular resolution is

R=ð2LÞ ¼ 2� for 1 Å resolution. This may be relaxed to about

4� if 2 Å resolution is accepted. However, the fact that

the orientations of less than half the diffraction patterns

could be determined suggests that a mean detected photon

counts pulse�1 pixel�1 of 10 is close to the practical lower limit

for the direct use of a common-line approach. Of course, our

current simulations were performed for a small protein and we

have not explicitly tested the dependence of this limit on

protein size. However, it is of interest to note that a similar

limit of counts per pixel is typical for cryoelectron microscopy

of biological entities.

The significance of these results becomes apparent on

comparing these values of �II0 with the estimated values of the

same quantity under the usual assumptions of the incident-

beam flux from an XFEL for two different values of the

focused beam diameter D, as shown in Table 6.

In compiling this table, we assumed that the molecule

consists of Natom non-H atoms (for the present purpose

modeled as C atoms). We also distinguished between small-q

and large-q scattering (where q is the scattering-induced

momentum change of an incident photon) for the following

reason. There is a large difference between the expected

photon count for low-q and for high-q scattering. Put simply,

all electrons in the sample scatter more or less in phase in the

low-q regime, thereby giving rise to a scattered intensity

proportional to N2, where N is the number of electrons in the

sample (’ ZNatom, with Z the average atomic number, and

Natom the number of atoms), while, in the high-q regime, the

scattered intensity is proportional to N.

Values for the differential scattering cross section of

12.4 keV X-rays by a C atom for small-q and large-q scattering

were taken from the tables on elastic photon–atom scattering

posted at the web site of the Lawrence Livermore National

Laboratory (http://www-phys.llnl.gov/Research/scattering).

Taking the effective width of a pixel as �k ¼ 2�=ð2LÞ (Huldt

et al., 2003), where L is a linear dimension of the molecule,

implies a reciprocal-space pixel area of ð�kÞ2 ¼ 4�2=ð4L2Þ.

The solid angle subtended at the sample by each pixel is then

� ¼ ð4�2=4L2
Þ=k2
¼ �2=4L2 sr; ð19Þ

where k is the wavenumber of the radiation and � the wave-

length. If a is the average spacing of non-H atoms, we may

take ðL=aÞ3 � Natom or L � aN
1=3
atom. Substituting this value for

L in (19), we deduce

� �
�2

4a2
N
�2=3
atom sr. ð20Þ

For high q, the measured photon count per pulse per pixel (n)

is estimated as

n � �NatomW�C ¼
�2

4a2
N

1=3
atomW�C; ð21Þ

with a similar expression for low q, but with an N
4=3
atom depen-

dence. Taking Natom ¼ 35 000 (corresponding to a protein of

approximately 500 kDa molecular weight), values for �, �C, D

and W given in Table 6 and a taken as 2 Å, we deduce the

values for n for small/large momentum transfer q shown in the

right-hand columns of Table 6.
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Table 6
Expected counts of detected photons pulse�1 pixel�1 for both small-q and large-q scattering by a 500 kDa protein with an XFEL source.

E represents the photon energy, �, its wavelength, �C , the typical differential scattering cross sections for a C atom for small/large q, D the assumed diameter of a
focused beam incident on the sample, W the photon fluence, and n the estimated scattered photon count per pulse per detector pixel.

�C (mm2 sr�1, �10�22) n (photons pulse�1 pixel�1)

E (keV) � (nm) Small q Large q D (mm) W (photons mm�2 pulse�1) Small q Large q

12.4 0.1 2.87 0.26 1 2.6 � 1018 50 1.4 � 10�4

0.1 2.6 � 1020 5000 1.4 � 10�2



It is important to note that, even for a focused beam

diameter of 0.1 mm, the expected photon count per pixel for

large-q data (needed for high-resolution structure determi-

nation) is approximately three orders of magnitude lower than

the level at which the common-line method is able to reliably

find the relative orientations of the diffraction patterns.

The estimates of Table 6 suggest that the photon counts in

the low-q region of a single diffraction pattern of a large

protein may be high enough to render the effects of shot noise

negligible. However, it is unlikely that structural information

directly available from low-q data will yield anything more

than the overall shape of the scattering object, as in the

technique of small-angle X-ray scattering (SAXS). It is an

open question whether a coarse orientating of patterns, which

may be performed with the low-q data, will help to orientate

entire diffraction patterns sufficiently accurately to exploit the

high-q data for high-resolution structure determination.

7. Discussion

The ability to record and sort two-dimensional diffraction

patterns from individual molecules is important for a number

of reasons. First and most obvious is the elimination of the

need for crystals. Second, and in our view equally important, is

the potential to sort and separate diffraction patterns from

different molecules or different molecular conformations in

the beam prior to structure recovery. The fact, for example,

that two-dimensional diffraction patterns from different

molecules do not have common lines might allow the

diffraction patterns to be separated into sets before further

analysis, with each set designating a different type of molecule

or molecular conformation.

This paper has been concerned with developing an algor-

ithm to determine the structure of a single-scattering entity

(such as a protein or nanoparticle) from multiple diffraction

patterns due to scattering from unknown random orientations

of identical copies of the object. We have shown that an

adaptation of a ‘common-line’ algorithm from three-dimen-

sional electron microscopy/tomography is able to accomplish

this task for noise-free diffraction patterns in the flat Ewald

sphere limit. There is little doubt that an extension of such a

method to curved common lines will similarly enable structure

determination from low-noise diffraction patterns at � 1 Å

wavelengths characteristic of currently planned XFELs

(Hajdu et al., 2000; Abela et al., 2007).

Of much greater concern is that fact that, even with the

most powerful XFELs currently envisaged, the expected

number of scattered photons per high-q pixel of a molecular

diffraction pattern from a single radiation pulse is far too low

for the alignment approaches proposed so far. The common-

line method relies on identifying similar intensity distributions

along single lines in two low-intensity (and thus high-noise)

diffraction patterns. As such, it is hardly surprising that it is

very sensitive to noise. Our conclusion is that such a method

requires a mean photon count of at least 10 per pixel in the

high-q region of a diffraction pattern, about three orders of

magnitude greater than expected from a proposed experiment

with an XFEL (Table 6).

We note that, in the proposed experiments, the minimum

photon count per diffraction pattern orientation is not deter-

mined by the minimum required to reconstruct a satisfactory

three-dimensional image of the object from projections of

known orientations, as in conventional tomography, but rather

by the need for correct classification and assembly of a three-

dimensional diffraction volume from data in diffraction

patterns alone. The minimum photon count in the former case

may be quite low, since the dose fractionation theorem for

three-dimensional electron microscopy/tomography (Hegerl

& Hoppe, 1976; McEwen et al., 1995) states that ‘A three-

dimensional reconstruction requires the same integral dose as a

conventional two-dimensional micrograph provided that the

level of significance and resolution are identical.’ This suggests

that, if there are M projections (or in our case, diffraction

patterns), the photon count per pixel required for an equally

successful three-dimensional reconstruction will be just 1=M

of that for a single projected image (in our case a single

diffraction pattern). In the absence of orientational informa-

tion, this theorem does not help because a much higher

photon count (about 10 photons pixel�1 per orientational

class) is needed for the successful assembly of a three-

dimensional diffraction volume suitable for structure solution.

In short, the minimum photon count for correct classification

and orientation is much higher than that needed for structure

recovery of a single biomolecule.

We now consider the possibility of classifying measured

diffraction patterns into sets of similar orientations and aver-

aging their intensities to improve their signal-to-noise ratios.

Bortel & Faigel (2007) find that successful classification of

measured diffraction patterns of a protein modeled by 35000

C atoms requires an incident photon fluence of

1028 m�2 pulse�1 = 1022 mm�2 pulse�1. Comparison with our

Table 6 shows that this is 100� the fluence expected from an

XFEL beam focused down to a 0.1 mm diameter spot. Even if

a more efficient method of classification were found, Table 6

indicates that the number of photons expected per high-

resolution pixel of the diffraction pattern is �10�2, approxi-

mately three orders of magnitude smaller than that needed for

the common-line method. This suggests the need for the

summation of the data from about 1000 diffraction patterns

per orientational class. Since Bortel & Faigel also find that

about 106 classes are required for faithful recovery of the

structure of such a molecule (assumed to be 100 Å in

diameter) to 3 Å resolution, it will be necessary to measure

�109 diffraction patterns. Assuming photon pulse and readout

rates of �100 Hz, appropriate for the Linac Coherent Light

Source (LCLS), the XFEL first projected to produce hard

X-ray photons, this would require �107 s, or several months of

continuous beam time for a single experiment.

We note that the classification problem is not eased for an

even larger scattering object, such as a virus or nanoparticle.

Equation (21) suggests that the number of photons per

detector pixel varies as N
1=3
atom. Thus, a scattering entity

modeled by Natom = 106 C atoms would scatter three times as
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many photons into each pixel. However, Bortel & Faigel

(2007) estimate the number of required orientational classes

for the structure solution of such an entity (assumed to be of

300 Å diameter) to 3 Å resolution is 2 � 107, an extra factor of

about 30 or so over the 500 kDa protein. The total number of

diffraction patterns required would be expected to increase by

the same factor, and hence time for data collection would be

expected to increase to �108 s, i.e. several years for a single

experiment at the pulse and readout rates assumed above.

Assembling a three-dimensional intensity distribution from

the low-intensity diffraction patterns from single molecules

obtainable from single pulses of an XFEL may not be practical

with the common-line method, the only approach mentioned

in the literature so far (see e.g. the Technical Design Report of

the European XFEL, Abela et al., 2007). This calls for the

development of entirely new algorithms that perform struc-

ture solution by simultaneously acting on all the data of all

measured diffraction patterns. Two such approaches have

been suggested by the present authors (Ourmazd et al., 2007;

Saldin et al., 2007) and will be the subject of forthcoming

publications.1

8. Conclusions

We have presented the first demonstration of an integrated

algorithm to determine the electron density of a particle or

large biomolecule, such as a protein, from a collection of two-

dimensional diffraction patterns, each from a molecule in an

unknown random orientation, as expected from the proposed

X-ray scattering experiments with XFEL sources. The method

involves first determining the relative orientations of the

different two-dimensional diffraction patterns, interpolating

the data onto a regular three-dimensional Cartesian grid in

reciprocal space at a sampling rate higher than the Nyquist

frequency for the size of the molecule, determining the phases

associated with the measured amplitudes, and hence deducing

the three-dimensional electron density of the molecule or

nanoparticle. There are significant differences with similar

algorithms developed previously for three-dimensional elec-

tron microscopy, owing to the absence of direct phase infor-

mation and the ambiguities due to Friedel’s law. We have

shown how these difficulties may be overcome, even in the

limit of a flat Ewald sphere, by the imposition of appropriate

consistency conditions. These enable the determination of the

relative orientations of the diffraction patterns, and hence the

molecular structure, to within the usual enantiomeric uncer-

tainty.

We have tested the algorithm with a computer simulation

for a model protein, at an X-ray wavelength short enough to

justify the flat Ewald-sphere approximation, with and without

Poisson noise for the detected photons. Adaptation of this

algorithm to take account of curved common lines can readily

extend the applicability of this approach to longer X-ray

wavelengths.

Our simulations have highlighted an important limitation of

a common-line method for finding the relative orientations of

diffraction patterns from random orientations of a sample.

Such methods depend on comparing the intensity distributions

along particular lines in two diffraction patterns, thus using

only a very small fraction of the available data for each

orientation determination. They are consequently very sensi-

tive to noise.

We find that the common-line method ceases to work reli-

ably for mean photon counts per pixel below about 10 in the

high-q part of a diffraction pattern. These regions contain the

high-resolution information needed to resolve the secondary

structure of a protein. Since the scattering by a typical

(500 kDa) protein of a pulse from a planned XFEL beam

focused to a spot of 0.1 mm diameter is expected to produce

some 1000� fewer photons per detector pixel, the use of a

common-line method would seem to necessitate the classifi-

cation and averaging of at least 1000 low-intensity diffraction

patterns per orientational class to correctly assemble the

scattered intensity distribution in three-dimensional recip-

rocal space.

The method of classifying diffraction patterns into orien-

tational classes examined by Bortel & Faigel (2007) requires at

least 100� the anticipated XFEL fluence. Even if superior

classification methods were devised, the determination of the

structure of a 100 Å-wide molecule to 3 Å resolution would

require about 106 orientational classes (Bortel & Faigel, 2007).

Assuming pulse and readout rates of 100 Hz, data collection

for a 500 kDa protein would require several months of

continuous beam time.

We thank Veit Elser, Leonard Feldman, Paul Fuoss, John

Spence and Brian Stephenson for helpful discussions.
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