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It is shown in this paper that the proper identification of the reference wave is the key to the successful
reconstruction of a three-dimensional image of the configuration of an atomic adsorption site from a set
of diffuse low-energy electron diffraction (DLEED) patterns of different electron energies, but the same
direction of incidence of the electron beam. 'We develop a reconstruction algorithm based on this idea,
and demonstrate its effectiveness by application to a set of calculated DLEED patterns. A powerful
feature of our algorithm is that if also filters out any residual effects on the diffraction patterns of long-
range order amongst the adsorbates, thus enabling the application of holographic LEED to disordered

adsorbates of much higher coverage.

I. INTRODUCTION

Low-energy electron diffraction! (LEED) plays the
same role in surface crystallography that x-ray diffraction
does in the crystallography of bulk materials. However,
one of the very properties that enables low-energy elec-
trons to be such useful probes of surfaces, namely, their
strong scattering by atoms, turns out to be an equally
strong obstacle to the development of direct methods??
for surface structure determination, due to the multiple-
scattering problem.

Szoke* and Barton® have proposed holographic®
methods of structure determination in photoelectron
diffraction, where the source of electrons is not some
external gun, but atomic cores within the sample. Saldin
and De Andres’ pointed out that similar ideas may be ap-
plied to the diffuse LEED (or DLEED) patterns formed
from the diffraction of low-energy electrons from a sur-
face containing disordered adsorbates. Saldin and DeAn-
dres’ illustrated their theory with reconstructions, from
several simulated DLEED patterns, of the positions of
near-neighbor substrate atoms relative to oxygen adsor-
bate atoms in hollow sites on a Ni(001) surface. Recog-
nizing that the fractional-order spots on LEED patterns
from an ordered array of adsorbates on a surface sample
the DLEED pattern from a corresponding disordered ad-
sorbate layer, Heinz and co-workers® and Hu and King®
applied similar holographic techniques to such conven-
tional LEED patterns.

It was also recognized early”!? that the quality and re-
liability of the reconstructed images may be improved by
simultaneously using data from diffraction patterns of
electrons of several different energies. Reconstruction al-
gorithms with energy-dependent phase factors!®!! have
also been used to recover three-dimensional atomic
geometries of clean and adsorbate-covered surfaces from
experimental photoelectron diffraction patterns.!> There
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have been parallel developments in the theory of holo-
graphic LEED,”!3 demonstrated recently with DLEED
experimental data. 4

In the most recent work on holographic LEED,*
the reference wave has been defined as that part of the in-
cident electron beam (assumed to be approximated by a
plane wave) forward scattered by an adsorbate. At com-
mon LEED energies of the order of hundreds of eV,
atomic scattering factors for electrons are highly forward
peaked. The resulting holographic reference wave is very
anisotropic, a circumstance not ideal for the reconstruc-
tion of good quality three-dimensional images.!® The
above authors>!>!* found that, for a given direction of
incidence of the electron beam, only the substrate atoms
close to the forward-scattering direction were recon-
structed well. In order to generate a satisfactory three-
dimensional image, they used information from several
sets of multienergy . diffraction patterns, each set from
electron beams with different directions of incidence. If
the directions from the adsorbate in which near-neighbor
substrate atoms are found is not known beforehand, as in
the case of a truly unknown structure, the number of
LEED patterns that must be measured may increase by
even a further order of magnitude.

In this paper we return to the definition of the refer-
ence wave of the original paper by Saldin and De An-
dres,” namely, as the wave that leaves the adsorbate for
the last time after all prior multiple scattering between
adsorbate and substrate.!”!®* We will show that, instead
of the experimentally difficult and time-consuming pro-
cess of using incident electron beams from different direc-
tions, the anisotropy of the reference waves may be com-
pensated for by a very simple mathematical estimation of
that anisotropy. Such an algorithm is somewhat analo-
gous to the scattered-wave included Fourier trans-
form'%?° (SWIFT) method of correcting for the anisotro-
py of the object wave in photoelectron diffraction. In
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diffuse LEED, of course, where the adsorbates act as
beam splitters of some external electron beam, the refer-
ence wave is a scattered wave. We find that use of our al-
gorithm enables the reconstruction of high-quality im-
ages of the local environments of adsorbate atoms from a
set of multienergy DLEED patterns due to external elec-
tron beams along a single direction of incidence, thus re-
quiring no prior knowledge whatsoever of substrate atom
directions, and reducing substantially the required set of
experimental data.

II. THE HOLOGRAPHIC VIEW OF DIFFUSE LEED

Pendry and Saldin'” have given a general theory of
diffuse LEED. They pointed out that diffuse LEED am-
plitudes may be calculated on a three-step model. Evalu-
ated in step 1 is the sum of the amplitudes of propaga-
tion, over all possible paths, of an electron from its dis-
tant source to its first encounter with an adsorbate. In
step 2, the total amplitude of all propagation paths of an
electron between its first and last encounter with the ad-
sorbate is calculated, and in step 3 the total propagation
amplitude from its last encounter with the adsorbate to
the detector is computed. The multiple scattering in step
2 may be evaluated in a spherical-wave basis by consider-
ing a cluster of atoms around the adsorbate, and by
evaluating the reflection matrix of that cluster.?! Howev-
er, DLEED calculations?? have shown that, under typical
electron energies in a LEED experiment, the backscatter-
ing amplitudes from the cluster are usually quite negligi-
ble, and that, in practice, step 2 may be omitted altogeth-
er. We follow this practice in the calculations reported in
this paper.

The propagation amplitudes in step 1 may be evaluated
very conveniently, using the formalism and computation-
al machinery of conventional LEED, according to which
a plane wave incident with unit (real) amplitude at a con-
ventional origin, r,, immediately above a crystal surface,
generates a set of Bragg waves, reflected back from the
surface, and of (complex) amplitudes R, at the same ori-
gin. The reflection amplitudes R, are calculated by con-
ventional LEED programs.! The resultlng total electron
amplitude at some arbitrary position r, is therefore

eixj-( iR, (r,—,)

o)t ERog(k‘“" ‘ o (1)
In the above expression, the wave vectors K are defined

in terms of their components parallel and perpendicular
to the surface by

KF=(ki*+gK5), @)

where ki,“ is the parallel wave-vector component of the
incident beam, g is a reciprocal-lattice vector, and the su-
perscripts T indicate whether the wave vectors are
directed into or out of the surface, respectively. 17 The
perpendicular components of K are

K§ =0 ke +g[2)2, 3

where the magnitudes k of the wave vectors inside the
crystal are given by
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LWP=E—V, @

(in hartree atomic units), E being the total energy of the
electron, and ¥, the potential-energy step at the surface,
generally a negative quantity.

If r, is identified with the position of an adsorbate on
the surface, expression (1) can be regarded as a sum of
plane-wave amplitudes incident on that adsorbate. Each
of the component plane waves gives rise to a scattered
wave, and the total amplitude at a position r relative to
the adsorbate, due to the sum of all the scattered waves,
may be written in the form

A®)e®/r (5)

where T specifies the direction of r, with

1K

AR)=e Ta "f,,(K*"

tKg {r,—r,)

+2Rog(k"‘° °f Ky ) ©6)

and
fa(kl-ﬁ2)=—l—:-—2(21 +1)sin{8,(k, )}
11
X exp{i8,(k,)}P,(k,k,) )

is the scattering factor of the adsorbate, describing the
elastic scattering of an electron of wave vector k, into a
direction specified by the unit vector k2 The quantity
8;(k,) is the atomic phase shift of angular momentum
quantum number [ of an electron of wave number k,, and
P,{cos(0)] is a Legendre polynomial, where 0 is the angle
of scattering.

A DLEED pattern is formed from the subsequent
propagation and scattering of the wave (5), which is step
3 of the three-step model of DLEED.'” It was this step

_that was described in holographic terms in the original

paper of Saldin and De Andres.” In such a picture, Eq.
(5) represents a reference wave R, originating at the ad-
sorbate, and the object wave O is identified with the extra
wavelets generaied by the scattering of this reference
wave by the atoms in the vicinity of the adsorbate. In the
direction corresponding to a detected wave vector k, the
kinematic (or single-scattering) estimate of the object
waves is then

ikrj tklr r; |

EA(’r‘ )< fs(r K)E—r E (8)

-1l ’

where r; is the position of a nearby atomic scatterer, and
fs(k3 k,) is the scattering factor of a substrate atom,
defined in analogy with (7), describing the scattering of an
electron incident from a direction k3 into a state specified
by the wave vector k.

Apart from some unimportant common factors, the to- .
tal DLEED amplitude at a point on a far-field diffraction
pattern corresponding to the detected wave vector k may
be found by combining (5) and (8) and writing



R(k)+O(k), )
where
R(k)=4(k) (10)

and
|
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Fj

0(K)=3 A(F;) (11)
j

The intensity of the DLEED pattern therefore takes the
form

H(k)=|R (k)+0(k)|>=|R (k)|>+R (k)O*(k)+ R *(k)O(k)+ |0 (k)|

A~ A S(A"k) ilkr,
=]4(k)*+ A(k)*zA(’fj)fr—’e i
o 7

where c.c. denotes complex conjugation, and the |0 (k)|?
term is not written explicitly.

The expression (12) gives an explicit dependence of the
intensity H (k) of a DLEED pattern on the positions r; of
the scatterers relative to the adsorbate. In Sec. III we ex-
amine how to construct an appropriate algorithm to re-
cover a fully three-dimensional picture of the nearest
scatterers to the adsorbate from a set of DLEED patterns
of different electron energies, but with a single direction
of incidence of the external electron beam.

1. AN ACCURATE AND PRACTICAL
RECONSTRUCTION ALGORITHM FOR DLEED

The right-hand side of (12) suggests that the rapidly
varying exponential terms within the square brackets give
rise to a set of interference fringes in H (k), whose period-
icity depends on the position vectors r;. Holographic
reconstruction algorithms seek to recover those position
vectors from their corresponding interference fringes by
Fourier transform methods.

Barton’s suggestion!® for such an algorithm in the
analogous case of photoelectron diffraction was

B)=[ [ [Hk)e r—kng3 (13)

where the triple integral indicates integration over all
three Cartesian components of k, it being understcod
that the integrals be performed over only that domain of
k over which values of the function H (k) are known.
Such an algorithm would be effective in DLEED also, if
the coefficient’ of the exponential displayed in (12) were
slowly varying with k. Then, substituting (12) into (13),
one could argue that stationary-phase conditions from
the exponential terms would tend to occur only for values
of r=~r;, and hence that a plot of |B(r)|? would recon-
struct the real-space distribution of scattering atoms
around the adsorbate.

A closer examination of the first term within the
square brackets in (12) suggests that such a simple algo-
rithm is likely to run into difficulties in DLEED. There
is no guarantee that the terms multiplying the exponen-
tials in (12) that depend on k will, in fact, be slowly vary-
ing over the whole of the domain of integration of k
(which will include variations of both magnitude and
direction of k).

Also, the terms that depend on r; may tend to enhance :

the amplitudes of the interference fringes due to scatter-

e [, (12)

ers in particular directions or distances from the adsor-
bate. For instance, the appearance of the distance r; in
the denominator of the coefficients of the exponentials in
(12) implies that the holographic fringes due to more dis-
tant scatterers have lower amplitudes. The term A4 (%;)
will tend to enhance the interference fringes due to
scatterers in directions in which this quantity has a large
amplitude. An examination of (6) suggests that | A(%)|
will be largest in the direction of the incident wave vector
K since the atomic scattering factor f, would be ex-
pected to be highly forward peaked at usual LEED ener-
gies [we will argue below that the second term on the
right-hand side of (6) would be expected to be much more
isotropic).

An improved reconstruction scheme is suggested the
SWIFT algorithm'*?° of photoelectron diffraction: con-
sider the replacement of (13) by

B)=[ [ [KkpHKe "k x03% ,  (14)

where the kernel K is formed by the inverse of the
coefficients of each of the exponential terms in (12) with
the general position vector r replacing the unknown atom
positions r;. In this case

K(kr)=|AEK)A®) (15)

£, (k) ‘"

r

This kernel cancels the coefficients of the exponentials in
(12) when r=r; to give a good stationary-phase condition
in the integral over k for those real-space points, but not
elsewhere, thus enabling a good reconstruction of the
nearby atom scatterer positions.

A problem that arises in DLEED is that the
coefficients 4 in (15) themselves depend on the quantity
(r, —r,), which specifies the position of the adsorbate rel-
ative to the substrate, the very geometrical quantity
sought in DLEED. Although, in principle, this quantity
may be related to the same vectors r; that appear explic-
itly in (12) (if the substrate is assumed to be not recon-
structed by the adsorption process), and thus be used to
construct a kernel K (k,r) that contains the substrate
backscattering amplitudes R,;, we will show that simple
physical arguments will enable the construction of a
much simpler kernel, which makes no assumption a priori

. about the state of local substrate reconstruction around

the adsorbate.
Consider replacing (14) by
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—ilkr—k

Bin=[[ [ J Kk, kprx(k, ke Pk,

xe" Vg%, (16)

where k; and k; are the components of k parallel and
perpendicular to the surface, z is the component of r per-
pendicular to the surface,

H,(,kl’kn)_Hav(k") ‘
Hy (k) ’

Xk, k)= (17

and
f{-{;(,kl’k" )dkl .
1fdkl

In Eq. (16) we have factorized the three-dimensional in-
tegral over the vector k in (14) into a one-dimensional in-
tegral over k; and a two-dimensional one over k,. In ad-
dition, we have replaced the DLEED intensity H in the
integrand by the function Y, which enhances the contrast
of the oscillations in H (ky), without affecting their
perlodlcmes A practlcal advantage of replacing H by Y
in the integrand of (17) is that the latter function would
also tend to filter out unwanted smooth background con-
tributions to a measured DLEED pattern from, e.g.,
thermal diffuse scattering or lattice defects. Another im-
portant practical reason for replacing H by y in the
reconstruction algorithm (16) will be pointed out in Sec.
V.

A careful examination of Eq. (12) reveals that, for a
given k|, H (k) oscillates with k; mainly due to the terms
in the square brackets on the right-hand side of (12).
Therefore, approximating H,,(k;) by the nonoscillatory
term | 4 (k)l2 and substituting (12) into (17), it may be
argued that

Mk k)~ 3 | =

H,, (k)= (18)

AG)) 1K)
Ak) i

i(kr —ker;)

Xe e |+ -0 (19)

The appropriate SWIF’I‘ kernel in this case may thus be
taken as

K (k) k;r)= (20)

Ak) r

Substituting the explicit expressions for the amplitudes 4
from (6), this may be reexpressed as

fe (T:k)
Dr

AR) [TEK ]_1

-1

K(k,kr)= |{f;H(K}D)+C) , @1

where

Cc= ERog( mc) Ky —K})r, —r,)

2V oS BY)

and

—KH)r =
D=f, (K+ k)+zR k"‘° UK =K ), =1, T

XfHK; k) . (23)
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In Egs. (20)-(23) we have used the notation of Wei and
Tong, in which the superscripts on the atomic scatter-
ing factors f indicate whether the scattering is forward
(+, if the scattering angle 6<90°) or backward (—, if
0>90°). A problem with the use of the SWIFT kernel
defined by Eqgs. (21)-(23) is that the position (r, —r,) of
the adsorbate relative to the surface appears exphcltly in
the kernel. This is, of course, not known a priori and is
one of the parameters sought. However, it will be noted
from (22) and (23) that the quantity (r, —r,) appears only
in the arguments of complex exponentials, thus contrib-
uting only phases to the summations in (22) and (23).
Given an initial total lack of knowledge of these phases,
we follow the spirit of the maximum entropy principle?
and choose the most unbiased distribution, namely, one
of random phases. On this assumption, one may take

C= [lea,,(kh"%f;(K;-f)tz ]1/2 4)
g
and

D~f (K} &)+ [EiRog inc) £ (K E)lz]m. 25)
g

It is well known that the angular variation of a typical
atomic scattering factor is much greater in the forward
than in the backward scattering direction for electrons of
energies typically used in LEED. This is illustrated in
Fig. 1, which depicts the variation with (polar) scattering
angle of both the magnitude and the phase of the oxygen
atomic scattering factor for electrons of energy E =12
hartrees (326 eV). Scattering angles close to zero corre-
spond to forward-scattered electrons, while those close to
180° to backscattering. To a first approximation there-
fore, the backscattering factors in (21)~(23) may be taken
as constant. On this approximation then, for a particu-
lar diffraction pattern, the term f, (T-k) in (21) and the

_ expression (24) for C may be regarded as constant. The

first term of expression (25) for D may likewise be taken
as constant. The second term in (25) contains the

]
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FIG. 1. Variation of (a) the magnitude (solid line) and (b) the
phase (dashed line) of the atomic scattering factor of oxygen
with angle of scattering (the abscissa).



forward-scattering factors K (Kg k) each of which is
peaked when k||K However, s1nce the second term
consists of a sum over a range of Bragg-reflected wave
vectors K whose directions cover essentially the whole
of the backscattering hemisphere, we take the sum of the
functions peaked at all those different directions as ap-
proximately isotropic.

Order-of-magnitude estimates of the quantities C and
D may be made by approximating the backscattering fac-
tors by their values for 180° scattering, and the forward-
scattering factors by their values for 0° scattering, and
these estimates used to evaluate the kernel (21) for use in
the reconstruction algorithm (16). Given the fact that
atomic scattering factors vary more slowly with energy
than scattering angle, however, we examine an even more
drastic approximation, namely, we replace C and D by
their averages {C) and (D), respectively, over all the
available diffraction patterns.

Since in the resulting expression for the kernel (21),
f,(Tk) and (D) may be regarded as constants and thus
act only as scaling factors, we may drop them from the
kernel (21), which may then be written as®*

fo(KF®)+(C)
¥

Kk, kpr)= (26)

We found that, in practice, the quality of the reconstruct-
ed images remained good over quite a wide range of
values assumed for {C ). For the calculations reported in
sec. IV, we took { C)=1.5 a.u., a quantity of the order of
that estimated from (24).

We will show in what follows that, despite its remark-
ably simple appearance, the use of a kernel of the form
(26) in the integrand of Eq. (16) enables the reconstruc-
tion of a high-quality three-dimensional image of the
nearest-neighbor substrate atoms, even from a DLEED
data set from electrons incident along a single dlrectlon
onto the surface.

IV. THREE-DIMENSIONAL RECONSTRUCTION
OF ADSORPTION SITES

In order to test our proposed algorithm, we simulated
DLEED patterns from Ni(001) surfaces containing disor-
dered layers of O atoms, adsorbed in the hollow, top, and
bridge sites, respectively (see Fig. 2), using the computer
program of Saldin and Pendry.?! The DLEED patterns
were calculated in each case for electrons, normally in-
cident onto the surfaces, of 23 different energies, ranging
from E =S5 hartrees (=136 eV) to E =16 hartrees (~435
eV), in 0.5-hartree (==13.6-eV) intervals. The variation
with electron energy of the DLEED patterns is illustrat-
ed in Fig. 3, which shows the simulated DLEED patterns
at 9, 10, and 11 hartrees (245, 272, and 299 eV, respec-
tively).

Our proposed reconstruction algorithm (16) with
scattered-wave kernel (26) was applied to the series of
diffraction patterns corresponding to each of the above
adsorption sites in turn. The quantity |B (r)|?> was calcu-
lated on a uniform three-dimensional (3D) voxel grid.
The results for hollow-site adsorption are displayed in
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Top Bridge

Substrate atom
(1st layer)

Substrate atom
(2nd layer)

FIG. 2. Schematic diagram of the hollow, top, and bridge
sites for atomic adsorption on a face-centered-cubic (001) sur-
face.

Fig. 4, those for the top-site in Fig. 5, and those for the
bridge site in Fig. 6. The Cartesian axes x and y in these
figures define a plane parallel to the surface, the z axes the
outward surface normal. The origin of the coordinate
system marks the position of the adsorbate atom in each
case (represented by a sphere). The distance scales are

9H

11H

" FIG. 3. Calculated diffuse LEED patterns from a lattice gas
of oxygen atoms adsorbed on the hollow sites on a Ni(001) sur-
face. The patterns due to normally incident electrons of three
different energies, E =9, 10, and 11 hartrees (245, 272, and 299
eV) are shown. The intensities are plotted on a uniform grid of
k) values, and the magnitude and direction of a (10) reciprocal-
lattice vector (g) is also shown. The mapping of the gray scale
to the intensities is indicated by the bar on the lower right.
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FIG. 4. Reconstructed image of the local atomic structure
for hollow-site adsorption of oxygen on a Ni(001) surface. The
adsorbed atom is at the origin of the 3D Cartesian coordinate
system, and is represented by a sphere. The positions of the four
nearest-neighbor Ni atoms in the outermost Ni layer, and that
of the atom in the second Ni layer directly below the adsorbate
are reproduced clearly.

specified by the ticks on the axes, at 1-A intervals. The
three-dimensional distributions are plotted in perspective,
with the intensity at each voxel represented by a sphere
whose radius is proportional to that intensity. The inten-
sities were rounded to the nearest integer in the range
0-255 (single byte data), with 255 representing the max-

FIG. 5. Same as Fig. 3, except for top-site adsorption. Here
the five nearest-neighbor atoms in the top Ni layer are repro-
duced.
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FIG. 6. Same as Fig. 3, except for bridge-site adsorption.
Here the two nearest-neighbor atoms on the top Ni layer are
reconstructed.

imum reconstructed intensity in the displayed cube. In
order to eliminate the very low intensities, we imposed a
threshold of 5% of the maximum below which intensities
were not plotted.

Remarkable fidelity is found on the reconstructed im-
ages, with high intensities at almost exactly the positions
of the substrate atoms relative to the adsorbate for all
three adsorption sites. Although the images presented in
this paper (Figs. 4 to 6) were reconstructed from the 23
DLEED patterns referred to above, no noticeable degra-
dation of image quality was found when the input data
consisted of just 12 DLEED patterns at 1-hartree (27.2-
eV) intervals in the same energy range.?

In a future paper we will discuss the accuracy with
which the positions of the substrate atoms may be recon-
structed. However, even a cursory examination of Figs.
3-5 indicates that the type of adsorption site, i.e., wheth-
er hollow, top, or bridge, is capable of being determined
with graphic clarity. Although the nearest-neighbor
atoms are reconstructed most obviously, some of the im-
ages, e.g., that of the bridge site in Fig. 6, also provide
fainter indications of the positions of next-nearest-
neighbor atoms.

The possibility also exists of using the information of
the approximate positions of the adsorbate relative to the
substrate apparent from Figs. 3-5 to calculate the quan-
tities C and D from the exact expressions (22) and (23),
respectively [rather than the approximate ones (24) and
(25)], to get a better estimate of the kernel K to recon-
struct a more accurate image. This process may be
iterated for even more accurate results.

V. DISCUSSION

We comment here on the reasons that the technique
presented here represents a significant advance over that
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of Wei and Tong.'® The first and obvious one is the elim-
ination of the experimental requirement of measuring
DLEED patterns from a variety of sample tilts (assuming
a constant direction of electron beam incidence) in order
to reconstruct a truly three-dimensional image.

The second is a little less obvious, and is related to an
important point made in the original DLEED paper of
Pendry and Saldin.!? It was commented there that the as-
sumption that the DLEED pattern, H ., calculated for
a model of a single adsorbate on a crystal surface, is iden-
tical (apart from a scale factor) to that, H,,,, from an en-
tire disordered layer of such adsorbates, is dependent
upon complete lattice-gas disorder. Any residual ordering
among the adsorbates would invalidate that assumption.
In reality, the two quantities are related by

chp =H .5 k]) _k}uc ’ (27)

where S'(k,— k,‘,“°) is a “structure factor” that characier-
izes the ordering among the adsorbates, and ki"® s the
component of the wave vector of the incident electrons
parallel to the surface. If the main object of interest is
not this long-range order, but the local geometry of the
adsorbate relative to the substrate, a device has to be
found to extract I, from I,,,. The solution proposed by
Pendry and Saldin was the comparison between experi-
ment and theory of not the bare intensities H,,, and
H_,., but a quantity known as a ¥ function, constructed
from the logarithmic derivative

aH( )
Yl ="~ [H(k) (28)

of the intensities with respect to electron energy at each
value of k; (for a given incident beam parallel wave vec-
tor, ki) It is obvious from a comparison of (27) and (28)
that a Y function calculated from H,, would be identical
to one from H ., due to the cancellation in the quotient
in (28) of the “structure-factor” term S.

It is clear from its definition (17) that the construction
of the function Y also eliminates the “structure factor” S
from measured DLEED intensities. Since our proposed
reconstruction algorithm (16) operates on Y rather than
on the bare intensities H, the reconstructed image will be
quite insensitive to any residual long-range order due to
interactions among the adsorbates. This probably has the
important experimental consequence of enabling the
short-range order of the adsorption site to be determined
even at relatively high adsorbate coverages, when
adsorbate-adsorbate interactions would be expected to be
significant.

It should be noted that the method of construction of a
similar signal-enhancing function ¥ by Wei and Tong!®
from derivatives of the DLEED intensities with respect
to energy at a constant direction, k, of the detected wave
vector does not have the desirable property of the com-
plete elimination of the “structure factor” S. A further
disadvantage of the need to combine data from
diffraction patterns of several different electron energies
corresponding to the same direction k is that there is no
way in general to prevent Bragg spots from passing close
to a particular k direction at all energies, whereas this is
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very easy to accomplish with a function of k;. (The
Bragg spots, of course, arise from scattering paths
confined to the substrate, and are of no use for the deter-
mination of the adsorbate sites.)

In the case of an ordered adsorbate layer, superstruc-
ture Bragg spots are formed, in addition to those due to
the substrate alone. Noting that®® these may be regarded
as sampling the DLEED intensities from the correspond-
ing disordered adsorbate layer, and that all the Bragg
spots occur at constant values of k, our algorithm would
appear to be well suited for attempting holographic
reconstruction in that case also. Indeed, in that case, the
X(k,,k) function (17) may be constructed from data
measured in conventional LEED, namely, the intensity
versus energy (or I/E) variations of each of the super-
structure Bragg spots.

-VI. CONCLUSIONS

In this paper we have described a holographic comput-
er algorithm that is able to reconstruct directly from a set
of calculated diffuse LEED patterns arising from electron
beams of a range of energies, incident along a single
direction onto a surface consisting of a lattice gas of ad-
sorbate atoms on a crystal substrate, a very accurate, and
fully three-dimensional representation of the nearest-
neighbor substate atoms. This is achieved by identifying
a reasonable approximation to the anisotropy of the
reference wave, and compensating for it. The particular
algorithm that we propose also has the very desirable
property of filtering out the effects on the DLEED pat-
terns of any residual long-range order among the adsor-
bates. The DLEED patterns employed in our test calcu-
lations were performed by the established computer pro-
grams of Saldin and Pendry,?! which have not only en-
abled surface structures to be found by conventional
trial-and-error fits to experimental data, but have also
paved the way for previous advances in holographic
reconstruction algorithms. As such, we have little doubt
that the technique will soon be able to reconstruct similar
high-quality images of the local adsorption sites of atomic
adsorbates from experimental data. The possibility that a
similar algorithm may also be able to reconstruct directly
the local adsorption sites of ordered adsorbates on sur-
faces from the I/E curves of superstructure Bragg spots
is also noted.
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