Table of Contents

About Muffin-Tin Potential Atomic Structure Input File WF.DAT

We shall go over what goes into inputting the appropriate wave functions.  This page is for option one of the four options for inputting the lattice atomic structure data.

Note: Herman-Skillman is configured to output the individual atomic wave function files with the correct format.  To build the muffin-tin potential input file wf.dat, all that is required is to concatenate the individual files together in the correct order.  The details of this page are largely for reference.

I.  Look at the input as defined by READ lines.

      DO 11 IR=1,NR
      READ(4,100)WFN
      IF(WFN.EQ.WFN1)CALL HSIN(RHO(1,IR),RX,NX(IR),NGRID,IR)

 100  FORMAT(9A8)
      SUBROUTINE HSIN(RHO,RX,NX,NGRID,IR)
      READ(4,100)NAME,Z,NC
      DO 3 IC=1,NC
      READ(4,101)LC(IC),N,FRAC
      READ(4,102)(RS(IX),IX=1,N)

 100  FORMAT(2A8/F9.4/I4)
 101  FORMAT(I4/I4/F9.4)
 102  FORMAT(1P5E14.7)





line01    [WFN] line02    [NAME] line03    [Z] line04    [NC] line05    { [LC(1)]         1s for atom type 1       } line06    { [N]                                      } line07    { [FRAC]                                   } line08    { [RS(1)] [RS(2)] [RS(3)] [RS(4)] [RS(5)]  } line08.1  { [RS(6)] [RS(7)] [RS(8)] [RS(9)] [RS(10)] } line08.2  {                   ...                    } line09    { [LC(2)]         2s for atom type 1       } line10    { [N]                                      } line11    { [FRAC]                                   } line12    { [RS(1)] [RS(2)] [RS(3)] [RS(4)] [RS(5)]  } line12.1  { [RS(6)] [RS(7)] [RS(8)] [RS(9)] [RS(10)] } line12.2  {                   ...                    } line13    ... continue through all subshells for atom type 1 line14    [WFN] line15    [NAME] line16    [Z] line17    [NC] line18    { [LC(1)]         1s for atom type 2       } line19    { [N]                                      } line20    { [FRAC]                                   } line21    { [RS(1)] [RS(2)] [RS(3)] [RS(4)] [RS(5)]  } line21.1  { [RS(6)] [RS(7)] [RS(8)] [RS(9)] [RS(10)] } line21.2  {                   ...                    } line22    { [LC(2)]         2s for atom type 2       } line23    { [N]                                      } line24    { [FRAC]                                   } line25    { [RS(1)] [RS(2)] [RS(3)] [RS(4)] [RS(5)]  } line26.1  { [RS(6)] [RS(7)] [RS(8)] [RS(9)] [RS(10)] } line26.2  {                   ...                    } line27    ... continue through all subshells for atom type 2 line28    ... Repeat with data for atom type 3, etc.

II. Discussion of the details of each input line

Using Zinc Centered Zinc Oxide for Example Input

  1. line 01, Type of File :

  2. WFN - 8 character descriptive for type of file.  For this option, it must be HERMAN-S to define the input as the radial wavefunctions as supplied by Herman-Skillman program. The wavefunctions for all atoms in the crystal should be concatenated together into a single file.
    Example:  HERMAN-S
  3. line 02, Name of Atom Type 1 :

  4. NAME - whatever you feel like calling atom type 1
    Example:  ZINC
  5. line 03, Atomic Number :

  6. Z - self explanatory :)
    Example:    30.0000
  7. line 04, Number of SubShells :

  8. NC - number of atomic states (subshells) for atom type 1.  These subshells will be looped through to read the wave functions for the complete atomic structure.
    Example:     7
  9. line 05, Angular Momentum :

  10. LC(1) - angular momentum state of the first subshell for atom type 1.
    Example:     0
                 for the 1s subshell of Zinc
  11. line 06, Number of Points :

  12. N - number of data points included for subshell 1 for atom type 1.
    Example:   201
  13. line 07, Fractional Occupation :

  14. FRAC - fractional number of electrons occupying the subshell
    Example:     1.0000
  15. lines 08, Modified Wave Function :

  16. RS(IX) - N values of the wave function for subshell 1 for atom type 1 as given by the Herman-Skillman program on the H-S radial mesh grid with a doubling period of 40 mesh points.
    Example:   0.0000000E+00 2.2513790E-01 4.4075802E-01 6.4716476E-01 8.4465355E-01
               1.0335121E+00 1.2140198E+00 1.3864475E+00 1.5510595E+00 1.7081113E+00
               1.8578517E+00 2.0005224E+00 2.1363578E+00 2.2655857E+00 2.3884270E+00
               2.5050960E+00 2.6158013E+00 2.7207456E+00 2.8201241E+00 2.9141276E+00
                                               ...
  17. lines 09 - 12, Data for SubShell 2 (2s) for Atom Type 1 :
  18. Example:     0
               241
                 1.0000
               0.0000000E+00 6.9217511E-02 1.3548759E-01 1.9888382E-01 2.5947821E-01
               3.1734151E-01 3.7254292E-01 4.2515016E-01 4.7522971E-01 5.2284652E-01
               5.6806433E-01 6.1094534E-01 6.5155071E-01 6.8994009E-01 7.2617203E-01
                                               ...
  19. line 13, Continuing Data for Atom Type 1 :

  20. The pattern of data continues for all of the subshells of the first atom type.  For this example of Zinc being atom type 1 for Zinc Oxide, line 04 gave NC = 7.  So, the information and wavefunctions for the 2p, 3s, 3p, 3d, and 4s subshells would follow.
  21. lines 14 - 17, Information for  Atom Type 2 :

  22. Same as for atom type 1, lines 01 - 04.  Describe the what atom type 2 is and how many subshells of wave function data are to be read in.
    Example:  HERMAN-S
              OXYGEN                                   
                  8.0000
                  3
  23. lines 18 - 27, Atomic Structure Data for SubShells of Atom Type 2 :

  24. Same as for atom type 1, lines 05 - 13.  The data for all the subshells of atom type 2; 1s, 2s, and 2p for this exampe of Oxygen being atom type 2 for Zinc Oxide.
    Example:     0
               241
                 1.0000
               0.0000000E+00 4.7097467E-02 9.3364894E-02 1.3881351E-01 1.8345438E-01
               2.2729845E-01 2.7035663E-01 3.1263947E-01 3.5415772E-01 3.9492172E-01
               4.3494192E-01 4.7422847E-01 5.1279145E-01 5.5064100E-01 5.8778673E-01
                                               ...
  25. line 28, Information and Atomic Structure Data for Atom Type 3, 4, etc. :

  26. For more complicated structures, the list of data for each unique atom type would continue on.
Go to top of page
Created: April 9, 1999 ---- Last Updated: April 12, 1999
By Mark D. Pauli